Nanomechanical oscillators for diamond spin-optomechanics

Main proposer: P. Maletinsky, Department of Physics, Klingelbergstrasse 82, University of Basel, see www.quantum-sensing.physik.unibas.ch

Co-proposer: R. Warburton, Department of Physics, Klingelbergstrasse 82, University of Basel, see physik.unibas.ch/dept/pages/de/personnel/warburton.htm

Nanoscale mechanical resonators have been explored in recent years for applications as diverse as ultra-sensitive nanoscale force-detection [1], coherent shuttling of quantum-information [2] or efficient charge-sensing [3]. Such experiments on nanomechanical systems raise fundamental questions related to the cross-over between quantum-mechanics and the classical world [4] and have recently culminated in the demonstration of ground-state cooling of mechanical systems [5, 6]. Our project is focussed towards the next generation of such experiments, which aims at the preparation and study of non-classical states of nanomechanical oscillators. This can most efficiently be achieved by coupling a nanomechanical resonator to a well-controlled, isolated quantum system, such as single electronic spin [7].

Towards these goals, we will explore diamond nanomechanical resonators (Fig. 1a) and their coupling to the individual electronic spins in "Nitrogen-vacancy" (NV) centres embedded in the diamond host matrix (Fig. 1b): a material-system particularly well-suited for our goals. In particular, our project will take advantage of the spin and optical properties of the NV centre to study the hybrid system of a diamond nanomechanical oscillator coupled to a single NV spin by crystalline strain [7]. On the long run, our work will provide key steps in the field of hybrid quantum systems and nanomechanical oscillators. Potential extensions with far-reaching consequences include the used of nanomechanical oscillators to shuttle coherent quantum states over long distances [2] or the generation of squeezed spin-ensembles using resonator-induced interactions [8].

We are looking for candidates with an excellent background in physics and high motivation to perform our challenging experiments. Work will involve diamond-nanofabrication, optical microscopy and spectroscopy, coherent spin manipulation and cryogenic experimentation. Our groups are highly connected on all labels and provide an excellent international network.

FIG. 1: a.) Prototype single crystal diamond cantilevers. Similar devices will be employed for our project. b.) Illustration of device configuration: A single, controllable spin embedded in a diamond nanomechanical oscillator (here a suspended “bridge”) forms a hybrid system with a nanomechanical oscillator. Typical device dimensions are indicated and below 100 nm, leading to mechanical resonances of ~ 1 GHz.