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Abstract

In this thesis we investigate a possible realization of a bosonic multimode environment for analog quantum
simulation. This platform consists of a metamaterial implemented by an one-dimensional array of coupled
superconducting microwave cavities made from thin Niobium Nitride (NbN) films. Such disordered super-
conductor allows to reach a very high kinetic inductance, which presents a two-fold advantage. First, it
allows to reach ultra-strong coupling with an artificial atom as the capacitive coupling is proportional to the
square root of the resonators’ impedance. The impedance of the resonator can be highly increased thanks
to its kinetic inductance. Second, its high kinetic inductance allows for very compact resonator and array
dimensions: Our resonator have a width of 50 µm, allowing three arrays to fit on a chip of 4 by 7 mm.
Furthermore, metamaterials allow engineering a non-trivial photonic dispersion relation, where it is possible
to obtain states displaying topological properties (so-called SSH-states). This coupled resonator array was
first simulated and modelled using finite element simulations and numerical calculations based on ABCD
circuit models and a tight-binding Hamiltonian. The observed features could be qualitatively reproduced
in measurement. The topological array configuration exhibits hybridised edge modes in the center of the
middle band gap, characteristic for the SSH model. In conclusion, we succeeded in realising a metamaterial
which allows for flexible engineering of the resulting band spectrum, a promising first step towards spin
boson model simulations.
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1 Introduction

Systems in nature are oftentimes described by many particles interacting with each other. To model such many-
body systems, it is necessary to define a playground which allows to simulate the couplings and correlations
between particles. However, modelling such systems relying on classical computing resources is not feasible,
due to their complexity. Advances in technology lead to the emergence of a new research field called quantum
simulation. There, complex quantum systems are investigated by using quantum hardware, i.e. hardware which
inherently obeys quantum mechanical laws [1]. One of the most interesting models to be studied in this manner
is the quantum impurity model. Most generally, a quantum impurity system consists of an “impurity” (small
system with few degrees of freedom) coupled to an “environment” or “bath” (large system with numerous
degrees of freedom). Quantum mechanics is needed to describe both the impurity and bath [2]. Two prominent
implementations of quantum impurity models are the Kondo model [3, 4] and the spin boson model [5, 6]. In
both models, the impurity has only one degree of freedom, namely spin. The Kondo model describes magnetic
impurities in a nonmagnetic metal, i.e. an alloy, simplified to a single impurity with spin 1

2 coupled to the
non-interacting conduction band electrons for temperatures reaching absolute zero [4]. Spin boson models can
be used to simulate dissipation in quantum mechanics or to study light-atom interaction. To model dissipation,
a two-level system such as a spin impurity is coupled to a bath of bosonic modes, which are described by
harmonic oscillators [6]. We consider a multimode bosonic system whose spectrum is represented in Figure 1.1.
This multimode bosonic environment interacts with a single two level system. We can identify three coupling
regimes:

↪→ Individual mode coupling: The qubit couples strongly with a single resonator mode with a coupling
strength g smaller than the free spectral range ∆ω.

↪→ Multimode coupling: For a coupling strength g that exceeds the free spectral range ∆ω (g > ∆ω), the
impurity can couple to several resonator modes at once.

↪→ Ultra-strong multimode coupling: By pushing the coupling strength g to be comparable to the qubit
transition frequency ωq, while maintaining g > ∆ω, the qubit can couple ultra-strongly to several resonator
modes. The rotating wave approximation breaks down and the system must be described by the full Rabi
Hamiltonian. For realisation of the spin boson model, the ultra-strong coupling regime must be reached.
The ultra-strong coupling regime for a capacitively coupled artificial atom can be reached by making use
of high-impedance resonators [7].

An integral part of quantum impurity modelling is engineering a suitable multimode environment. This multi-
mode environment serves as the bosonic bath, which interacts with the (spin) qubit. This can be implemented
by several approaches, such as using a superconducting long coplanar waveguide resonator [8], photonic crys-
tals [9] or coupled cavity arrays [10]. Such metamaterials allow for flexible and precise engineering of the mode
spectrum, making them a promising platform for analog quantum simulation [11, 12].

In this thesis, a specific type of metamaterial, namely a capacitively coupled resonator array, is investigated.
The building block of the metamaterial is hence a superconducting lumped-element LC resonator.

Fig. 1.1: Multimode Coupling. a) Schematic of multimode bosonic environment, depicted as several harmonic oscillators
(blue), coupled to a qubit (red). b) Spectrum of multimode bosonic environment, with free spectral range ∆ω and coupling
strength g with the qubit.
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The outline of the thesis is as follows:

↪→ Section 2 provides the basis for understanding the physics of coupled resonator arrays, starting with one
parallel RLC Resonator in Section 2.1. The description is then extended to two hybridised resonators (Sec-
tion 2.2) and arrays (Section 2.3). It is also explained why the high kinetic inductance of the metamaterial
makes it an exciting platform in Section 2.4.

↪→ In Section 3, it is described how the devices were designed (Section 3.1), simulated (Section 3.2 and
fabricated (Section 3.3). The (cryogenic) measurement setup, as well as the fitting procedure are presented
in Section 3.4 and Section 3.5, respectively.

↪→ Section 4 is dedicated to modelling of the metamaterial. The metamaterial was modelled using a circuit
model, a tight-binding model and the software Sonnet. The main findings for both dimer (Section 4.1)
and array (Section 4.2) simulations are presented.

↪→ Section 5 summarises the principal experimental results obtained during the thesis. After a characterisa-
tion of the implemented lumped-element resonators in Section 5.1, the focus lies on the coupled resonator
arrays in Section 5.2. The measurements are also compared to simulations in Section 5.2.3.

↪→ Section 6 draws a conclusion from the results produced during the thesis.

↪→ Lastly, Section 7 provides an outlook on on-going research, stemming from the insights obtained from the
thesis results.
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2 Coupled Resonator Arrays

The metamaterial studied in this thesis is built from superconducting lumped-element resonators, which are
capacitively coupled to each other. In this section, the vocabulary and general equations for treating such
a coupled resonator array are presented. In Section 2.1, the building block of the metamaterial, a parallel
RLC resonator, is introduced. It is explained how one can measure its properties in subsection 2.1.1. In the
next section 2.2, two coupled resonators and their transmission spectrum are discussed. The study is extended
to coupled resonator arrays in Section 2.3, where two different models are introduced for modelling such an
array: The ABCD-Matrix approach (see Section 2.3.1) and derivation of the Hamiltonian from the Lagrangian
(see Section 2.3.2). In Section 2.3.2, it is also briefly explained how this Hamiltonian follows the Su-Schrieffer-
Heeger model and its terminology is acquainted. Lastly, in Section 2.4, one important material property of the
investigated coupled resonator array is presented, namely its high kinetic inductance.

2.1 Parallel RLC Resonator

The building block of our metamaterial is a superconducting, lumped-element resonator. In microwave circuitry,
a lumped element is defined as a passive component with a size such that there is a negligible phase shift of
voltage and current across the element from input to output. The lumped element approximation holds well for
a maximal dimension size less than λ/20, where λ is the wavelength of the applied microwave signal [13]. An
important characteristic in analysis of (microwave) circuits is the impedance Z, which was originally defined as
the complex ratio between voltage V and current I in lumped AC circuits [14].
Near resonance, the building block of our metamaterial can be modelled as a parallel RLC resonator (see Fig. 2.1).
The input impedance of this circuit is

Zin =

(
1

ZR
+

1

ZL
+

1

ZC

)−1

=

(
1

R
+

1

iωL
+ iωC

)−1

(2.1)

at an angular frequency ω, for a resistance R, an inductance L and a capacitance C [14]. For amplitudes
|I|, |V | ≠ 0, the resistance R of the circuit dissipates the power

Ploss =
1

2

|V |2

R
. (2.2)

On the other hand, the capacitor stores, on time-average, the electric energy

Wel =
1

4
|V |2C (2.3)

and the inductor the average magnetic energy

Wmag(ω) =
1

4
|IL|2L =

1

4
|V |2 1

ω2L
, (2.4)

with the current flowing through the inductor as |IL| =
1

ωL
|V |, using V = L

dIL
dt

for V ∝ sinωt. The two

energies in Eqs. (2.3) and (2.4) are equal at resonance ω = ωr [14, 15]. The resonance frequency fr = ωr/(2π)
is thus given by

Wel = Wmag(ω = ωr)

1

4
|V |2C =

1

4
|V |2 1

ω2
rL

ωr =
1√
LC

⇐⇒ fr =
1

2π

1√
LC

. (2.5)

Aside from the resonance frequency fr, the quality factor Q1 is another important parameter to characterise a
resonant circuit. It is defined as

Q = ω
average energy stored

energy loss per cycle
=

fr
∆f

, (2.6)

where ∆f denotes the linewidth or full width at half maximum (FWHM) of the resonance curve [14, 16]. A
resonance curve in transmission is plotted in Fig. 2.1. The FWHM ∆f is also called decay rate κ and is an
equivalent measure of losses. From Eq. (2.6) we note that the decay rate is thus given by κ = fr/Q.

1Apparently, K.S. Johnson was the first one to attribute the letter of Q to this ratio, before it was even named “quality factor”.
He choose Q because it was the only letter of the alphabet left without a meaning assigned. The term “quality factor” was later
introduced by V.E. Legg and prevailed. The whole story can be read in Ref. [16].
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Fig. 2.1: Parallel RLC Resonator. a) Circuit schematic of a parallel RLC resonator. The resonator has a inductance L,
capacitance C and resistance R. b) S21 transmission amplitude of a parallel RLC resonator. Its shape follows a Lorentzian
and reaches its maximum at resonance frequency fr. The FWHM ∆f is marked.

The higher the quality factor of a resonator, the lower are its losses. Internal, i.e. intrinsic, losses of a resonator
may be conductor losses, dielectric losses or radiation losses and are modelled by the resistance R - which is
why a resistance is included in the model, even though the resonator itself is superconducting. For a parallel
RLC resonator, this internal or unloaded quality factor Qi reads

Qi = ωr
Wel +Wmag(ω = ωr)

Ploss

(2.2−2.4)
= ωr

1/2
(
C + 1

ω2
rL

)
1/R

= ωrRC =
R

ωrL
, (2.7)

with
1

ω2
rL

= C from Eq. (2.5) [14]. However, a resonator is commonly coupled to an external circuit in order

to measure its spectrum. For a parallel RLC, this is captured by connecting an external load resistance Rext in
parallel (see Fig. 2.2). The total resistance is then

Rtot =

(
1

R
+

1

Rext

)−1

=
R Rext

Rext +R
. (2.8)

The total or loaded quality factor QL is then given by replacing R by Rtot in Eq. (2.7)

QL =
Rtot

ωrL
=

R Rext

(Rext +R) ωrL
. (2.9)

The internal and loaded quality factor are linked by

1

QL
=

1

Qi
+

1

Qc
, (2.10)

where the external or coupling quality factor Qc accounts for losses due to coupling to the environment.
From Eqs. (2.7) and (2.9) it follows that

Qc =
Rext

ωrL
. (2.11)

Analogously, losses can be quantified using the internal decay rate κi, the total decay rate κL and the coupling
rate to the environment κc. Combining Eq. (2.6) with Eqs. (2.7), (2.9) and (2.11) it follows that

κi =
2πf2

r L

R
, κL =

2πf2
r L

Rtot
, κc =

2πf2
r L

Rext
. (2.12)

Fig. 2.2: Circuit Schematic of a Loaded RLC Resonator. The RLC unit is shaded in grey. An external load resistance Rext

is connected in parallel to the resonator.
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2.1.1 Transmission Spectrum of Hanged Resonator

The quality factors of a resonator can be extracted by measuring it either in transmission, reflection or in
hanged mode (see Fig. 2.3). The drawback of the transmission configuration is that it requires an additional
recording of the transmission baseline to calibrate unity transmission through the system. This calibration
is needed because cable and resonator loss cannot be distinguished in transmission mode and this limits the
accuracy of quality factor extraction [17, 18]. In reflection mode, there is no need for this calibration, however,
a non-reciprocal element such as a circulator is required to re-direct the reflected signal to an output port, to
prevent signal going back to the input port. On the other hand, the hanged configuration provides the possibility
of measuring several resonators in one run. They can all be placed on the same feedline, granted they have
distinct resonance frequencies. This configuration also allows straightforward extraction of the quality factors,
without calibration [17].

Fig. 2.3: Three Types of Resonator Measurement. Transmission: The resonator is coupled to an input and an output
feedline on each side. Reflection: The resonator is probed by coupling it to one end of the feedline. Hanged: The resonator
couples to a feedline whose transmission is measured.

To characterise our resonators, we measured them in the hanged configuration. In the ideal case, where there is
no impedance mismatch and the background signal is completely flat [17], the measurement setup is described
by the circuit schematic in Fig. 2.4. The parallel RLC resonator is coupled to the waveguide with impedance
Z0 via a coupling capacitance Cc.
Applying Kirchhoff’s voltage law for both loops and Kirchhoff’s current law, we have

Vs = Z0I1 + I3Zr (2.13)

Z0I2 = ZrI3 ⇐⇒ I2 =
Zr

Z0
I3 (2.14)

I1 = I2 + I3 (2.15)

and from the schematic in Fig. 2.4,
V2 = Z0I2. (2.16)

The transmission from port 1 to port 2 is then given by the scattering parameter S21, which is defined as [19]

S21 =
2V2

Vs

(2.13,2.16)
=

2Z0I2
Z0I1 + I3Z0

(2.15)
=

2Z0I2
Z0(I2 + I3) + I3Zr

(2.14)
=

2ZrI3
Z0(Zr/Z0 + 1)I3 + ZrI3

=
2

2 + Z0/Zr
(2.17)

where the resonator and its coupling capacitance Cc to the feedline are combined to form the impedance Zr:

Zr = ZRLC + Zc
(2.1)
=

(
1

Rr
+

1

iωLr
+ iωCr

)−1

+
1

iωCc
. (2.18)
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Fig. 2.4: Circuit Schematic in Hanged Configuration. A LC Resonator (Lr,Cr) capacitively coupled with coupling capaci-
tance Cc to the feedline with impedance Z0. Losses in the resonator are modelled with the resistance Rr. Inspired by [17].

For this configuration, the internal quality factor Qi and the coupling quality factor Qc can be expressed as

Qi =
ωr

Rr(Cr + Cc)
(2.19)

Qc =
Cr + Cc

ωrZ0C2
c

, (2.20)

where ωr = 1/
√

Lr(Cr + Cc) [20].

2.2 Hybridised Resonators

On the way to realising coupled resonator arrays, the simplest case is a dimer, i.e. two coupled resonators. They
can either couple inductively or capacitively. All metamaterials discussed within this thesis rely on capacitive
coupling. A typical transmission amplitude profile of a dimer is plotted in Fig. 2.5. The two resonators hybridise
and their spectrum shows two Lorentzian peaks. The splitting between the two peaks is given by two times the
coupling rate J between the resonators.

Fig. 2.5: Transmission Spectrum of a Resonator Dimer. Two coupled resonators have a transmission spectrum consisting
of two peaks, separated by 2J , where J is the coupling rate.

2.3 Theoretical Models of A Coupled Resonator Array

The coupled resonator arrays are theoretically modelled as a lumped-element circuit. First, the ABCD matrix
formalism is introduced. Second, the Lagrangian for the system is derived and mapped to the tight-binding
Hamiltonian.

2.3.1 ABCD Matrix

For a two-port microwave device, one can define the 2x2 transmission - or ABCD - Matrix. It links the in-flowing
current I1 and voltage V1 on port 1 to out-flowing current I2 and voltage V2 on port 2 [14]:V1

I1

 =

A B

C D

V2

I2

 (2.21)
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Fig. 2.6: Simplest ABCD Model. The impedance of the circuit is described by the ABCD Matrix, which connects ports 1
and 2.

The convenience of the ABCD formalism lies in its straight-forward extension to a cascade of microwave circuits
in series or parallel (see Fig. 2.7). For obtaining the total ABCD matrix Mtot of a system with N circuits, one
multiplies the ABCD matrices for each circuit Mi in the order of their arrangement:

Mtot = M1 ·M2 ·M3 · · ·MN

Fig. 2.7: Multiple Circuits with the ABCD Model. The three matrices describe circuits which are connected in series or
parallel with each other and to the two ports 1,2.

Following this logic, one can construct Mtot for a LC resonator dimer, capacitively coupled to the ports
(see Fig. 2.8). Using that the impedances Z of a capacitor C, ZC , and an inductor L, ZL, are given by

ZC =
1

iωC
(2.22)

ZL = iωL, (2.23)

as well as the fact that impedances in parallel can be added up as ZΣ = (Σk 1/Zk)
−1

, the ABCD matrices for
the three different circuit elements (see Fig. 2.8) can be constructed:

Mc =

1 ZCc

0 1

 =

1
1

iωCc

0 1

 , Mi =

1 ZCi

0 1

 =

1
1

iωCi

0 1

 (2.24)

Mr =

 1 0

1/ZCr
+ 1/ZLr

1

 =

 1 0

iωCr +
1

iωLr
1

 . (2.25)

The parameters are the coupling capacitance Cc to the feedline, the coupling capacitance between the two
resonators Ci, and self-capacitance Cr and self-inductance Lr of the resonator. The ABCD matrix for the dimer
is then given by

Mtot = Mc ·Mr ·Mi ·Mr ·Mc. (2.26)
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Fig. 2.8: ABCD model for a LC resonator dimer. a) Circuit schematic of the LC dimer. b) Schematic in the ABCD formalism,
where each circuit element is modelled as an ABCD Matrix M in series or parallel.

Analogously, the system can be extended to N (dimeric) unit cells (see Fig. 2.9):

MN−Array = Mc · (Muc ·Mx)
N−1 ·Muc ·Mc, (2.27)

with Muc = Mr ·Mi ·Mr and Mx =

1 ZCx

0 1

 =

1
1

iωCx

0 1

 .

Fig. 2.9: ABCD model for a left-handed LC Resonator Array with N unit cells. The dimeric unit cells are framed in
dotted yellow. The first and last unit cell are connected to the ports via a capacitance Cc. Each unit cell has an internal
coupling capacitance Ci. The unit cells are capacitively coupled to each other with a coupling capacitance Cx.

S21 spectrum
Once the ABCD matrix of the system is determined, the (complex) transmission spectrum S21 from port 1 to
port 2 can be calculated with the entries of the matrix M =

(
A B
C D

)
and the port impedance Z0 [14]:

S21 =
2

A+B/Z0 + CZ0 +D
. (2.28)

Dispersion relation
In the limit of an infinite array, with unit cell number N → ∞, the dispersion relation can be calculated using
that in one unit cell of index n, the in- and out-going voltages and current are linked by the ABCD matrix of
the unit cell, Muc: Vn

In

 = Muc

Vn+1

In+1

 =

Auc Buc

Cuc Duc

Vn+1

In+1

 (2.29)

with Muc of Eq. (2.27). The voltage and current at unit cell n can be expressed as

Vn = V +
0 e−ikna (2.30)

In = I+0 e−ikna, (2.31)
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assuming that they only propagate in positive z = na direction, with unit cell length a [14, 21]. Hence, the
out-going voltage Vn+1 and current In+1 pick up a propagation factor e−ika:

Vn+1 = Vne
−ika ⇐⇒ Vn = Vn+1e

ika (2.32)

In+1 = Ine
−ika. ⇐⇒ In = In+1e

ika (2.33)

Inserting Eqs. (2.32) and (2.33) in Eq. (2.29) results inVn+1e
ika

In+1e
ika

 =

Auc Buc

Cuc Duc

Vn+1

In+1

 (2.34)

⇐⇒ 0 =

Auc − eika Buc

Cuc Duc − eika


︸ ︷︷ ︸

M̃

Vn+1

In+1

 . (2.35)

This system of equations has a solution with wave vector k(ω) if the determinant of M̃ is equal to zero. If the
determinant of M̃ were not equal to zero, the system of equation would have one definite solution for Vn+1, In+1.
More precisely, the system of equation would only have the trivial solution Vn+1, In+1 = 0, which is not what
we are looking for. Thus,

det M̃ = (Auc − eika)(Duc − eika)−BucCuc
!
= 0

⇐⇒ AucDuc − (Auc +Duc)e
ika + e2ika −BucCuc = 0

⇐⇒ 1− (Auc +Duc)e
ika + e2ika = 0 (2.36)

⇐⇒ e−ika + eika = Auc +Duc (2.37)

⇐⇒ 2 cos(ka) = Auc +Duc = Tr(Muc) (2.38)

(2.39)

where we used that detM = AD − BC = 1 for any ABCD matrix M [14], 2 cos(ka) = e−ika + eika and the
trace (Tr) of a matrix is given by the sum of its diagonal elements. The dispersion relation thus reads

cos(ka) =
1

2
Tr(Muc) ⇐⇒ k(ω) =

1

a
arccos

(
1

2
Tr(Muc)

)
(2.40)

for a given unit cell ABCD matrix Muc.

2.3.2 Lagrangian Formalism

One can also model the coupled resonator array by deriving the Lagrangian of the system. The schematic in
Fig. 2.10 represents an overview on the variables. The voltage at each LC resonator (Lr, Cr) is denoted by
V S
n , where n ∈ {1, 2, ..., N} stands for the unit cell index and S ∈ {A,B} is the site index. The resonators

are arranged in dimeric unit cells, with intra-cell coupling capacitance Ci and capacitance Cx between two unit
cells. The first and the last resonator of the chain are coupled to the ports with a capacitance Cc.

Fig. 2.10: Circuit Model of Capacitively Coupled Resonator Array. A unit cell is highlighted in yellow. The first and last
unit cell are connected to the ports via a capacitance Cc. Each unit cell has an internal coupling capacitance Ci. The unit
cells are capacitively coupled to each other with a coupling capacitance Cx. Each resonator has a capacitance Cr and an
inductance Lr. The voltages V S

n and currents ISn used in derivation are labelled.

To write down the Lagrangian of the whole system, we first determine the Lagrangian for one unit cell, high-
lighted by the yellow box in Fig. 2.10. The total potential energy stored on the capacitors of unit cell n
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is

EC,n =
1

2

[
Ci

(
V B
n − V A

n

)2
+ Cx

(
V A
n+1 − V B

n

)2
+ Cr

(
V A
n

)2
+ Cr

(
V B
n

)2]
, (2.41)

while the kinetic energy in the inductors is equal to

EL,n =
Lr

2

[(
IAn
)2

+ [
(
IBn
)2]

. (2.42)

Now, the kinetic energy of the inductors can also be expressed in terms of the magnetic flux through them with
Faraday’s law, ISn = LrΦ

S
n . By defining the flux variable Φ as

ΦS
n ≡

∫ t

−∞
V S
n (τ) dτ ⇒ Φ̇S

n = V S
n (2.43)

S ∈ {A,B}, n ∈ {1, 2, . . . N},

the Lagrangian Ln = EC,n − EL,n reads

Ln =
1

2

[
Ci

(
Φ̇B

n − Φ̇A
n

)2
+ Cx

(
Φ̇A

n+1 − Φ̇B
n

)2
+ Cr

(
Φ̇A

n

)2
+ Cr

(
Φ̇B

n

)2]
− 1

2Lr

[(
ΦA

n

)2
+ [
(
ΦB

n

)2]
(2.44)

where the capacitive energy plays the role of the kinetic energy (because it contains the time derivative of term
variable ΦS

n) and the inductive energy assumes the form of a potential energy [11, 22].
This Lagrangian for the unit cell may also be written in matrix form [12] as

Ln =
1

2
Φ̇T [Cn]Φ̇− 1

2
ΦT [Ln]Φ (2.45)

with the vectors Φ̇T =
(
Φ̇A

n , Φ̇
B
n , Φ̇

A
n+1

)
, ΦT =

(
ΦA

n , Φ
B
n , Φ

A
n+1

)
, the capacitance matrix [Cn]

[Cn] =


Ci + Cr −Ci 0

−Ci Ci + Cr + Cx −Cx

0 −Cx Cx

 (2.46)

and the inductance matrix [Ln]

[Ln] =
1

Lr


1 0 0

0 1 0

0 0 0

 . (2.47)

The system Lagrangian is then given by summing Eq. (2.44) over all N unit cells. It is assumed that Cc = Cx

in the following. This configuration is also implemented in the measured resonator arrays and simplifies the
calculation. The system Lagrangian in matrix form thus reads

Lsys =
1

2
Φ̇T [C]Φ̇− 1

2
ΦT [L]Φ (2.48)

with the vector Φ̇T =
(
Φ̇A

1 , Φ̇
B
1 , Φ̇

A
2 , Φ̇

B
2 , . . . , Φ̇

A
N , Φ̇B

N

)
(analogously for Φ). The capacitance matrix can be

written down as

[C] =



CΣ −Ci 0 0 0 0 · · · 0 0 0 0

−Ci CΣ −Cx 0 0 0 · · · 0 0 0 0

0 −Cx CΣ −Ci 0 0 · · · 0 0 0 0

0 0 −Ci CΣ −Cx 0 · · · 0 0 0 0
...

... 0
. . .

. . .
. . .

. . . 0 0 0 0
...

...
... 0

. . .
. . .

. . .
. . . 0 0 0

...
...

...
... 0

. . .
. . .

. . .
. . . 0 0

...
...

...
...

... 0
. . .

. . .
. . . 0 0

...
...

...
...

...
...

. . .
. . .

. . . −Cx 0

0 0 0 0 0 0 · · · 0 −Cx CΣ −Ci

0 0 0 0 0 0 · · · 0 0 −Ci CΣ



(2.49)
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with CΣ = Ci + Cr + Cx. Analogously, the inductance matrix of the system is then

[L] =
1

Lr



1 0 · · · · · · · · · 0

0 1 0 · · · · · · 0
... 0

. . .
. . . · · · 0

...
...

. . .
. . . 0 0

...
...

...
. . . 1 0

0 0 0 · · · 0 1


(2.50)

In order to calculate the Hamiltonian from the Lagrangian, one introduces the charge variables QS
n , which play

the role of canonical momenta (while the flux variables ΦS
n represent position):

Q =
∂L
∂Φ̇

(2.51)

with QT = (QA
1 , Q

B
1 , . . . , Q

A
N , QB

N ).
For the given system, the charge variables are

QA
n =

{
CΣΦ̇

A
n − CiΦ̇

B
n for n = 1

CΣΦ̇
A
n − CiΦ̇

B
n − CxΦ̇

B
n−1 for n ∈ {2, 3, . . . , N}

(2.52)

QB
n =

{
CΣΦ̇

B
n − CiΦ̇

A
n − CxΦ̇

A
n+1 for n ∈ {1, 2, . . . , N − 1}

CΣΦ̇
B
n − CiΦ̇

A
n for n = N

(2.53)

or to write it in a more compact manner, Q = [C]Φ̇.
Making use of the matrix formalism yet again, the Hamiltonian H then reads [12, 22]

H =
1

2
QTC−1Q+

1

2
ΦTLΦ (2.54)

The inverse of the capacitance matrix [C−1] can be determined analytically. This result can be simplified using
the assumption that second order terms of Ci, Cx are negligible in comparison to Cr. This assumption is fulfilled
in our system, with Ci, Cx ∼ 1 fF and Cr ∼ 13 fF. Thus, we put C2

i , Cx, CiCx ≈ 0. Under those assumptions,
the inverse capacitance matrix can be expressed as

[C−1] = Lrω
2
r



1 βi 0 0 0 0 · · · 0 0 0 0

βi 1 βx 0 0 0 · · · 0 0 0 0

0 βx 1 βi 0 0 · · · 0 0 0 0

0 0 βi 1 βx 0 · · · 0 0 0 0
...

... 0
. . .

. . .
. . .

. . . 0 0 0 0
...

...
... 0

. . .
. . .

. . .
. . . 0 0 0

...
...

...
... 0

. . .
. . .

. . .
. . . 0 0

...
...

...
...

... 0
. . .

. . .
. . . 0 0

...
...

...
...

...
...

. . .
. . .

. . . βx 0

0 0 0 0 0 0 · · · 0 βx 1 βi

0 0 0 0 0 0 · · · 0 0 βi 1



(2.55)

with the definitions

ω2
r =

1

Lr
· [C−1]jj =

1

Lr
· 1

CΣ
(2.56)

βi =
Ci

CΣ
(2.57)

βx =
Cx

CΣ
. (2.58)
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Using Eq. (2.55), the system Hamiltonian reads

H =
1

2

N∑
n=1

Lrω
2
r

[(
QA

n

)2
+
(
QB

n

)2]
+

1

Lr

[(
ΦA

n

)2
+
(
ΦB

n

)2]
+

+
Lrω

2
r βi

2

N∑
n=1

QA
nQ

B
n +QB

nQ
A
n +

Lrω
2
r βx

2

N−1∑
n=1

QA
n+1Q

B
n +QB

nQ
A
n+1 (2.59)

and can be quantized by promoting the charge and flux variable to operators that satisfy the commutation
relation

[Q̂S′

n , Φ̂S
m] = iℏδmnδS′S (2.60)

where S′, S ∈ {A,B} and m,n ∈ {1, 2, . . . , N}. Now the charge and flux can be written in terms of annihilation
and creation operators:

Q̂A
n =

√
ℏ

2Lrωr
(â†n + ân) (2.61)

Q̂B
n =

√
ℏ

2Lrωr
(b̂†n + b̂n) (2.62)

Φ̂A
n = i

√
ℏLrωr

2
(â†n − ân) (2.63)

Φ̂B
n = i

√
ℏLrωr

2
(b̂†n − b̂n) (2.64)

Inserting Eqs. (2.61) to (2.64) into Eq. (2.59), one arrives at

Ĥsys = ℏωr

N∑
n=1

(â†nân + b̂†nb̂n) + ℏJi
N∑

n=1

(â†nb̂n + ânb̂
†
n)︸ ︷︷ ︸

intra−cell coupling terms

+ ℏJx
N−1∑
n=1

(â†n+1b̂n + ân+1b̂
†
n)︸ ︷︷ ︸

inter−cell coupling terms

(2.65)

with frequency ωr, intra-cell coupling Ji and inter-cell coupling Jx:

ωr =

√
1

LrCΣ
(2.66)

Ji =
ωrβi

2
=

ωrCi

2CΣ
(2.67)

Jx =
ωrβx

2
=

ωrCx

2CΣ
. (2.68)

The constant term ℏNωr was dropped since it is only an energy offset. Moreover, the counter-rotating terms
â†nb̂

†
n and ânb̂n were abandoned, following the rotating wave approximation. This approximation holds for

coupling strengths Ji, Jx ≪ ωr [11], which is fulfilled in our system. The couplings (Ji/2π, Jx/2π) are around
100 MHz, while the resonance frequency ωr/2π is around 4.4 GHz.
The Hamiltonian can also be expressed in matrix form as

Hsys = ℏ v†[H] v (2.69)
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with v† = (â1, b̂1, . . . , âN , b̂N ). The matrix [H] assumes the form

[H] =



ωr Ji 0 0 0 0 · · · 0 0 0 0

Ji ωr Jx 0 0 0 · · · 0 0 0 0

0 Jx ωr Ji 0 0 · · · 0 0 0 0

0 0 Ji ωr Jx 0 · · · 0 0 0 0
...

... 0
. . .

. . .
. . .

. . . 0 0 0 0
...

...
... 0

. . .
. . .

. . .
. . . 0 0 0

...
...

...
... 0

. . .
. . .

. . .
. . . 0 0

...
...

...
...

... 0
. . .

. . .
. . . 0 0

...
...

...
...

...
...

. . .
. . .

. . . Jx 0

0 0 0 0 0 0 · · · 0 Jx ωr Ji

0 0 0 0 0 0 · · · 0 0 Ji ωr



(2.70)

and its eigenvalues supply the energy spectrum of the resonator array. This Hamiltonian can also be derived
in the tight-binding model, which is discussed in appendix A. Note that appendix A follows a more theoretical
approach with units such that ℏ = 1, and by choosing ℏωr as the zero of energy.
For the following discussion, it is necessary to introduce the Su-Schrieffer-Heeger (SSH) model and its termi-
nology. As its name suggest, the model was introduced in 1979 by Su, Schrieffer and Heeger [23]. The SSH
model concerns itself with electrons hopping along a one-dimensional chain with alternating hopping amplitudes
- hence describes a system such as the one presently discussed. A detailed treatment of the SSH model can be
found in appendix A. Here, the main statements are briefly presented.
The dispersion relation is

ω(k) = ωr ±
√
J2
i + J2

x + 2JiJx cos(ka), k =
2πn

Na
(2.71)

where a is the unit cell length and n ∈ {−N/2, . . . , N/2} with N being the number of unit cells. For Jx ̸= Ji,
the dispersion relation has two frequency passbands. The upper passband is described by Eq. (2.71) with plus
sign, while the lower passband is described using the minus sign in the same equation [11].
In the SSH model, three different coupling configurations can be distinguished:

↪→ Ji > Jx: The intra-cell coupling is larger than the inter-cell coupling. The frequency spectrum has two
passbands, separated by a middle band gap of 2|Ji − Jx|. This regime is called trivial.

↪→ Ji = Jx: Intra- and inter-cell coupling are equal, there is one passband. We further refer to this configu-
ration as normal.

↪→ Ji < Jx: The inter-cell coupling is larger than the intra-cell coupling. The frequency spectrum has two
passbands, with a middle band gap of 2|Ji − Jx| in between. In this gap, two almost-zero energy states
are available. Those are the symmetric and anti-symmetric superposition of a left and right edge state.
These edge states are localised at the two ends of the array and decay exponentially to the middle of
the array. The left edge state only has occupancy on the first resonator of each unit cell, while the right
edge states only resides on the second resonator of each unit cell. The edge states have an overlap on the
order of e−(N−1)/ζ with localisation length ζ = 1/ ln(Jx/Ji) [24]. Henceforth, the hybridised edge modes
are abbreviated as HEM. Their splitting is proportional to (Ji/Jx)

N [25] and decays for increasing unit
cell number N , since Ji/Jx < 1. This configuration is called the topological regime. The trivial and
topological regimes can be topologically distinguished (see appendix A), hence the name.

To observe such edge state physics, the resonators must all have the same bare resonance frequency ωr [11].

2.4 High Kinetic Inductance

As mentioned in the introduction (Section 1), it is crucial to attain a high coupling strength g between bosonic
environment and qubit. The coupling strength g scales with the zero-point voltage fluctuations Vrms. For a
resonator with fundamental frequency f0, the zero-point voltage fluctuations Vrms are proportional to f0

√
Zr,

with characteristic impedance Zr =
√
Lℓ/Cℓ [26]. It is thus desirable to increase the inductance per unit length
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Lℓ and decrease the capacitance per unit length Cℓ. In superconducting resonators, the characteristic impedance
can be pushed by increasing the kinetic inductance Lk. As it name hints, the kinetic inductance origins from
the kinetic energy of the cooper pairs [27]. High kinetic inductance can be reached by using disordered thin
superconducting films like NbN, the material chosen for this thesis.
Disordered superconducting thin films, exhibiting a kinetic inductance Lk, also present a non-negligible non-
linearity in the circulating current I:

Lk = Lk,lin

(
1 +

(
I

I∗

)2
)

(2.72)

with Lk,lin =
ℏRn

π∆0
, (2.73)

where I∗ is of the order of the critical current, Rn is the normal state resistance and ∆0 = kBTc is the
superconducting energy gap, with critical temperature Tc and Boltzmann constant kB [27–29]. Due to their
non-linear kinetic inductance, the coupled resonator arrays from thin-film NbN are expected to behave differently
depending on the drive power. This is why a power sweep was recorded for each measured resonator array.
The high kinetic inductance, and thus high impedance, of thin-film NbN allows for very compact resonator
designs. For instance, in our case, the resonator spans 50 µm while still having a resonance frequency in the
GHz regime.
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3 Materials and Methods

This section gives an overview on the technical and methodical approaches used to produce the results of
this thesis. In Section 3.1, the design process is outlined. The obtained designs were simulated as described in
Section 3.2. The fabrication is briefly summarised in Section 3.3. The devices were fabricated by other members
of the (extended) group. In Section 3.4, the working principle of the cryostat, as well as the measurement setup
are presented. Lastly, the fitting procedure for the measurement results is described in Section 3.5.

3.1 Design

The designs for both fabrication and simulation were drawn using the python module gdspy [30] and the editor
KLayout [31]. Each design consists of two parts: Resonator array and waveguide environment. Thus, the code
to draw LC resonators and the two investigated waveguide geometries had to be developed. The approach taken
and the obtained results are described in this section. All code is available on GitHub [32].

3.1.1 Resonator

The resonator is designed to follow the lumped element approximation with capacitor plates for coupling and a
meandering inductor to ground. Its shape is inspired by the design of Kim et al. [11]. A function to draw the
resonator was written in python. It takes the length of the inductor l, its width w and interspacing s, as well
as the width A and thickness t of the capacitor as input (see Fig. 3.1). The number of turns for the inductor
and the height of the capacitor B are calculated as a function of these input parameters. The chosen parameter
values are listed in Table 1. The values are picked such that the arrays produce a response between 4 and 8
GHz, which is the bandwidth of our measurement setup.

Fig. 3.1: gds Drawing of one Resonator. Values of the in-
dicated parameters are listed in Table 1. The variable l is not
indicated since it stands for the inductor length.

Table 1: Dimensions for one Resonator. A, t, l, w, s are cho-
sen manually as input parameters for the resonator drawing
function.

A B t l w s

50 µm 60 µm 2 µm 279 µm 0.5 µm 4.5 µm

To draw the resonator array, the required number of resonator copies were aligned with the desired spacing
in between them (see Fig. 3.2). The spacing between the resonators controls the capacitive coupling between
them: The smaller the inter-resonator spacing, the higher the coupling capacitance. In arranging the arrays,
one has two spacing parameters: The intra-cell spacing ti and the inter-cell spacing tx. The three different
coupling configuration are thus given by choosing ti, tx accordingly:

↪→ ti > tx for trivial. Specifically, (ti, tx) = (24, 12) µm for measured and simulated arrays of this thesis.

↪→ ti = tx for normal. For the investigated arrays, the inter-resonator spacing was chosen as ti = tx =18 µm,
with 18 µm being the mean of 12 and 24 µm.

↪→ ti < tx for topological. The same values as for the trivial configuration were chosen for implementation of
this configuration, but swapped: (ti, tx) = (12, 24) µm.

Those specific inter-resonator spacings apply for all resonator arrays of Sections 4.2 and 5.2, excluding Sec-
tion 5.2.6.
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Fig. 3.2: .gds Drawing of Trivial Resonator Array End. The resonator array is enclosed by two ground planes, which
are connected by ground strips. The spacing to the feedline Sr is chosen here to be equal to the inter-cell spacing tx. The
intra-cell spacing ti is smaller for trivial configuration than tx, giving a higher intra-cell coupling capacitance Ci, compared to
the inter-cell coupling capacitance Cx. The array is capacitively coupled to a feedline on both ends.

3.1.2 Waveguide for Transmission Measurements

For transmission measurements, each end of the resonator array has to be coupled to a feedline. Here, the
coupling was of capacitive nature. Two different feedline “head” geometries were implemented: A “T”-shaped
feedline and a “ghost” feedline. The “T”-shaped feedline (see Fig. 3.3, blue inset) provided strong capacitive
coupling. On the other hand, the “ghost” feedline (see Fig. 3.3, green inset) terminates in a structure resembling
a resonator. The inductor however is not connected to ground, so that is does not resonate in the measurement
range. Since it resembles a resonator unit from the array - but is not one - we call it ghost. Its purpose is to keep
the resonance frequency of the edge resonator equal to the others. Apart from the head region, the microwave
feedline is implemented as a coplanar waveguide in the middle and a bonding pad at the edges. The dimensions
of the middle section were chosen to match an impedance of 50 Ω, taking the high kinetic inductance of our
superconducting film into account.
As indicated in Fig. 3.2, the ground planes on the two sides of the waveguide were connected to each other via
the ground strips in between resonators. They reduced potential differences between the ground regions, as well
as the intra- and inter-cell couplings Ci, Cx.

Fig. 3.3: gds Drawing of Transmission Waveguide. a) Overview of whole device. The resonator array is shaded in grey. b)
Enlarged view of implemented ghost feedline, c) Head region of ghost feedline, the resonator-like structure is not connected
to ground. d) Enlarged view of implemented T-shaped feedline.

On a 4×7 mm2 chip, three devices were placed. They all had the same number of resonators, arranged in trivial,
topological and normal configuration respectively (see Fig. C.8 in appendix C.3 for the .gds of the etch mask).
Devices hosting 16, 24, 32 or 64 resonators were fabricated. The “T”-shaped feedline was only implemented for
a 16 resonator array, all other chips had feedlines with the “ghost head”.
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3.1.3 Waveguide for Hanged Resonators

The waveguide for hanged resonators consists of a 50 Ω coplanar waveguide along which hanged resonators are
placed in some windows opened in the ground plane. The windows are equally spaced along the feedline. The
dimensions of these windows depends on the resonator dimensions to be placed inside, as well as its spacing to
the feedline. The width of one window was chosen to be twice the resonator width to reduce capacitive coupling
of the resonator to the environment. The waveguide structure is shown in Fig. 3.4, without resonators. The
chosen dimensions are listed in Table 2. For the waveguide, the dimension are chosen to match an impedance
of 50 Ω, taking the high kinetic inductance of our superconducting film into account.

Fig. 3.4: gds Drawing of Hanged Waveguide. Values of the indicated parameters are listed in Table 2. Right inset: The
spacing between resonator and feedline is denoted with Sf .

Table 2: Dimensions of Waveguide for Hanged Resonator Measurements. L,P,Q, d, c, w are choosen manually. A is the
width of the hanged resonator, h is its entire height. The horizontal dimension of the wells Y is determined by the height of
the hanged resonator, its spacing to the feedline Sf and the gap c of the waveguide.

L P Q d c w A Y

476 mm 360 µm 530 µm 70 µm 4 µm 200 µm 50 µm Sf + 1.2h− c

This hanged geometry allows simultaneous measurement of several resonators, provided they have distinguish-
able resonance frequencies. In our case, the resonance frequency was controlled by varying the inductor length.
In this manner, four resonators were placed along the waveguide. They were designed to be apart in resonance
frequency by at least 500 MHz. On one chip of 4×7 mm2 dimension, three waveguides with each four resonators
were placed. In each waveguide, all four resonators had the same distance Sf to the feedline. For the three
waveguides, Sf was chosen to be 6, 18 or 60 µm respectively.
While placing the resonator near the waveguide provides higher capacitive coupling, which is a good basis to
check whether a response can be observed in measurement, it impedes extraction of the quality factors. The
recorded spectrum will show a broad dip, due to high coupling to the feedline. To achieve accurate fitting, it is
favourable to place the resonator at a sufficiently large distance to the waveguide, which will provide a coupling
factor comparable to the internal quality factor (see Section 2.1).
We fabricated and measured three devices with different resonator-feedline distances Sf = 6, 18 and 60 µm.
Hence, the three distances were chosen to obtain the following information all in one cool down:

1. Whether all four resonators are visible in the spectrum (Sf = 6 µm)

2. A transmission spectrum data set suited for fitting (Sf = 18 µm), and to surely be in the under-coupled
regime (Qc ≫ Qi), Sf = 60 µm.

3.2 Simulation

Before fabricating the devices, they were simulated to define a proper choice of parameters. To get a preliminary
understanding about the frequency response of the system, we implemented simulations with Microwave Of-
fice [33]. Microwave Office allows for fast and real-time updated circuit response analysis. However, Microwave
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Office only accepts a lumped-element circuit model of a resonator array as input. To implement an electromag-
netic finite element simulation of our arrays, we made use of the software Sonnet [34]. Sonnet relies on solving
Maxwell’s Equations for the given (planar) geometry, by subdividing the metal surface and first calculating
the voltage in each of those subsections separately and afterwards applying and adjusting currents to fulfil the
boundary conditions across all subsections. A typical workflow in Sonnet results in a file such as in Fig. 3.5 and
includes the following steps:

1. Import a .gds file of the design to be simulated. The .gds file should have the polygons at the
places where the circuit has metal. Different materials should be separated into different layers. In our
case, we only have one metal layer (NbN). Around the imported structure, a box is defined. Everything
that touches this box is shorted to ground. As mentioned above, Sonnet subdivides the metal surface
into smaller subsections or cells. The cell size was chosen to be 0.5×0.5 µm2, according to the smallest
dimension in the system, the inductor width w.

2. Define the substrate and top material (see Fig. 3.5, side view): For the substrate, we chose silicon
and for the top material vacuum (air). The parameters are listed in Table 3.

3. Specify the metal(s) layers. Here, we used a planar metal in general mode, with kinetic inductance
square Ls = 160 pH /□ for simulations in Section 4 and 112 pH /□ in Section 5.2.3.

4. Place the microwave ports. All simulations required two ports to simulate the S21 response. We used
box ports terminated in 50 Ω, placed on the edge of input and output feedline (see Fig. 3.5, top view).

5. Configure the sweep. The simulations were run in Adaptive Sweep (ABS) mode, with the option
“Enhanced resonance detection” ticked. This option is recommended for extremely sharp resonances,
characteristic for superconductor applications such as here. The ABS method calculates the full elec-
tromagnetic response at several discrete frequencies and then synthesises the whole spectrum from the
acquired data [35]. Optionally, the current distribution of the circuit can also be calculated.

Fig. 3.5: Example of Sonnet Simulation File. For simulations, only the resonator array with two short section of feedline
on each side was considered. Port 1 and Port 2 are schematically shown as boxes and terminated in 50 Ω. The structure is
embedded in a grounding box (grey solid border).

Table 3: Parameters of Substrate and Top Material The symbols denote the relative permittivity ϵrel, dielectric loss
tangential tan δ and conductivity σ. All other parameters in the software had default values.

material thickness ϵrel tan δ σ

silicon 500 µm 11.9 10−7 4.4·10−4 S/m

air 1 mm 1.0 0.0 0.0

3.3 Fabrication

All fabrication described here was carried out by other members of the (extended) group.
A schematic overview of the fabrication process is shown in Fig. 3.6. The numbering in the following description
correspond to the steps defined in Fig. 3.6. The starting substrates are high-resistivity silicon wafers. These
silicon wafers were first cleaned (1). Second, the wafers were spin-coated with AZ ECI 3007 photoresist (2).
Markers for the electron beam lithography (EBL) were pre-defined using photo lithography (3) and subsequent
development of the resist (4). For the markers, Ti/Pt was deposited using electron beam evaporation (5). The
titanium acts as a adhesion layer for the platinum on the silicon substrate. Lift-off was done in NMP at 70◦C
for > 8 h (6). Afterwards, a photoresist was spin-coated onto the wafer. The photoresist protects the wafer as
it was diced into smaller chips (7), each containing several sample cells. The photoresist was stripped. Onto
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those diced chips, a NbN film of thicknes 10 < t < 25 nm was sputtered, giving a sheet inductance around
80 < L□ < 105 pH/□ (8). For array fabrication, the chips were spin-coated with CSAR resist (9). Using the
markers, the mask of the device layout was written on the chips with EBL (10). After development, all areas
where the NbN needs to be etched were exposed (11). Next, the chips were dry-etched using reactive ion etching
with CF4/Ar (12). The resist was stripped by placing the chips in NMP at 70◦C over 5 days (13). The chips
were once more spin-coated with a photoresist and diced into the 4×7 mm2 sample chips. After dicing, the
photoresist was stripped again.

Fig. 3.6: Schematic of Fabrication Process. The coupled resonator arrays were fabricated from thin-film NbN on high-
resistivity silicon substrate. 1) The silicon wafers were cleaned. 2) The wafer was spin-coated with photoresist. 3) The mask
for markers was written with photolithography. 4) The photoresist was developed. Exposed areas are removed during the
process. 5) Ti/Pt markers were deposited using electron beam evaporation. 6) The mask and metal residues were removed
in a lift-off step in hot NMP. 7) The wafer was diced into smaller chips. 8) Thin-film NbN (23 nm) was sputtered onto the
chips. 9) The chips were spin-coated with resist for electron beam lithography (EBL). 10) The etch mask to define the device
structures was written with EBL. 11) Exposed areas of the EBL resist were removed during development. 12) The chips were
dry-etched by CF4/Ar ion plasma. 13) Resist residues were stripped from the chips by placing them in hot NMP over 5 days.

For measurement, a sample chip was glued onto a PCB with PMMA resist. The devices were connected to the
PCB via wire-bonding (Fig. 3.7a). Several wires connecting the ground of the devices with the PCB improved
grounding of the chip. Additionally, bridge bonds connecting the different ground areas on the sample chip
were placed to prevent an imbalance in potential between the areas (Fig. 3.7b).

Fig. 3.7: Bonding of the Devices. To measure the devices in the cryostat, they were glued onto a PCB and connected via
wire-bonding. The device has dimensions of 4×7 mm2. a) PCB with chip (dark rectangle in center). The wires connecting
the bonding pads of the devices with the SMP cable sockets of the PCB are framed in green. b) Zoom-in on bonded chip.
One connection bond to the PCB sockets is framed in green. Bonds on the edge of the device to PCB ground (blue) improve
grounding of the chip. Bridge bonds (white arrows) between on-chip ground areas reduce potential differences.

3.4 Cryogenic System

The devices were measured at temperatures < 20 mK in a BlueFors BF-LD dilution refrigerator. An image
is included in Fig. 3.8. After closing the cryostat by mounting all shields, it first needs to be pre-cooled from
room temperature to T < 4.2 K. A pulse tube compressor undertakes this task. The actual cooling process to
reach lower than 20 mK can be initiated at temperatures T < 4.2 K, the temperature of liquid helium. The
cooling cycle relies on particular properties of He3/He4 mixtures at low temperatures. A He3/He4 mixture with
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a sufficiently high concentration of He3 will separate in two phases at temperatures below 0.8 K (see Fig. 3.8b).
These two phases are a He3-rich phase (called concentrated phase) and a He3-poor phase (called dilute phase).
For T → 0 K, there is exclusively He3 in the concentrated phase. The dilute phase reaches a He3 concentration
of 6.4%. In the dilute phase, the He3 have higher enthalpy than in the concentrated phase. Forcing He3 atoms
from the concentrated to the dilute phase thus requires energy. This is used to induced cooling. Before initiating
the cooling cycle, a condensing step of the He3/He4 into the system is required. The helium mixture pressure
is increased to about 2 bar with a compressor. The mixture is then pre-cooled by heat-exchangers on the
condensing line and by its passage through the main flow impedance in the top part of the still. The condensed
mixture fills up the mixing chamber, the heat exchangers and the still (see Fig. 3.8d). Subsequent pumping of
the still leads to evaporative cooling, dropping still temperature below 0.8 K. As explained above, the mixture
thus separates into two phases. The heavier dilute phase gathers at the bottom of the mixing chamber. After
some time, the lighter concentrated phase and the heavier dilute phase settle above each other. This is the
starting point for the actual cooling cycle.
The cooling cycle is depicted in Fig. 3.8d. When the still is pumped, mostly He3 will be removed, since its
vapor pressure is considerably higher. The removed He3 is re-introduced via the condensing line into the mixing
chamber. There, it is forced from the concentrated to the dilute phase, inducing cooling. He3 in the dilute
phase is then driven from the mixing chamber to the still due to osmotic pressure (concentration gradient). The
cooling power can be increased by heating the still. Heating leads to an increased still vapour pressure and thus
a higher flowing rate of He3, meaning more He3 crosses the phase boundary [36].

Fig. 3.8: Dilution Cryostat. a) Image of open cryostat. The different plates are labelled: quasi-4K plate (4K), still, cold plate
(CP) and mixing chamber plate (MXC), on which the mixing chamber is situated (shown in c). Above the quasi-4K is the 50
K stage (not visible in picture). b) Phase diagram of He3/He4. Depending on temperature and He3 concentration fraction,
the mixture is either in normal state, a superfluid or separated into two phases. d) Schematic of cooling cycle. Figure b and
d taken from [36].

3.4.1 Measurement Setup

For measurement, a Rohde & Schwarz ZNB20 Vector Network Analyzer (VNA) with four ports was used. All
four ports were connected to input and output lines as shown in Fig. 3.9a. This, and circulators, allowed
subsequent measurement of all scattering parameters S11, S12, S21, S22 in one measurement run. The VNA was
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remotely controlled by a Jupyter notebook python script. The input lines were attenuated by 20 dB in the
fridge. A chain of 3 insulators and an amplifier was placed on the output lines. DC blocks on all lines got
rid of DC offsets in the signal. Since we usually placed three devices on each sample chip, microwave switches
have been included into the setup at the mixing chamber plate. To each switch, 6 lines could be connected (see
Fig. 3.9f,g). With the measurement setup shown here, 6 devices could thus be fully characterised in one cool
down. The sample chips on the PCB were mounted on a coldfinger thermally anchored at the mixing chamber
plate (see Fig. 3.9c). The coldfinger is magnetically shielded (see Fig. 3.9c) to block off vortex penetration into
the superconducting thin film sample.

Fig. 3.9: Measurement Setup. The devices were mounted on a coldfinger thermally anchored at the mixing chamber plate
and measured with a VNA. a) Schematic of cryogenic setup. All four ports of the VNA were connected, enabling subsequent
measurement of all scattering parameters of the array (S11, S12, S21, S22). Data was recorded by controlling the VNA via
computer with a Python script. Microwave switches allowed measuring several devices in one cooldown and same in- and
output lines. The symbols are labelled in the legend at the bottom. The device (dev) is shown as a rectangle. On the left,
the different stages are named: Room temperature (RT), 50 K stage, 4 K stage, still, cold plate (CP) and mixing chamber
plate (MXC). b) Image of mixing chamber plate. On the coldfinger, the chip was mounted (framed in black). c) Image of
coldfinger enclosed in its shield. d) Zoom-in on the coldfinger tip. The PCB with the chip (e) is mounted from below. f + g)
Front and back of switches.

3.5 Fitting

3.5.1 Hanged Resonators

The S21 transmission is collected as a function of probe frequency f . To fit the hanged resonators, the python
class resonator tools.circuit.notch port by Sebastian Probst [37] was applied. It includes a fitting routine
with background correction for resonators in notch configuration. First, the baseline of the transmission am-
plitude spectrum is fitted using the function fit baseline amp(). This fit is then removed from the data and
simultaneously, the data is normalised. Using the autofit routine, the normalised data is fitted. The python
module takes the function

Snotch
21 (f) = aeiαe−2πifτ

(
1−

QL

|Qc|e
iϕ

1 + 2iQL(f/fr − 1)

)
(3.1)

with prefactors a, α and electrical delay τ describing the environment of the sample, such as the wiring outside
and inside the fridge, through which the signal travels. The sample-specific parameters are the resonance
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frequency fr, the loaded quality factor QL, the absolute value of the coupling quality factor |Qc| and a phase
ϕ quantifying the impedance mismatch [38]. The fitting procedure first follows the technique described in [39]
and finalises the fitting by utilising the scipy.optimize least square fitting toolbox.
The fitting routine provides the diameter-corrected internal quality factor Qi, dia corr, the absolute value of the
coupling factor |Qc| and the loaded quality factor QL with their respective errors. For enhanced accuracy, the
internal quality factor is extracted with the diameter correction method, instead of the conventionally employed
φ rotation method. The conventional method overestimates the value of Qi for asymmetric line shapes [40].

3.5.2 Arrays

For the resonator arrays, each peak of the S21 magnitude was fitted with the Lorentzian

|S21(f)| =
Smax√

1 + 4
(

f−f0
κ

)2 (3.2)

with the central frequency f0 and a full width at half maximum (FWHM) κ. The loaded quality factor is then
estimated as Q = f0/κ [41].
The fitting code iterates over all peaks. First, it searches for the transmission amplitude maximum in the data,
then proceeds to fit the curve in a window around it. Afterwards, the fit parameters are used to draw the fit
over the whole measurement range. This fit is then subtracted from the measurement data. The code then
finds the next maximum in the data and so on.
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4 Modelling

As a guideline for fabrication and afterwards interpretation of results, the resonator arrays were modelled making
use of Sonnet. In this section, we present the findings from Sonnet simulations and from theoretical models in
Section 2.3. First, a resonator dimer is investigated in Section 4.1. The discussion is then extended to arrays
in Section 4.2.

4.1 Dimer

We initially studied the coupling strength between two capacitively coupled resonators (a dimer, see Fig. 4.1a).
From the S21 spectrum (see Fig. 4.1b), the two mode frequencies f1, f2 were extracted as the two maxima and
the coupling J = 1

2 (f2− f1) was determined. This was done for different inter-dimer separations d and spacings
to the feedline Sr, ranging from 4 to 86 µm for d and 4 to 32 µm for Sr. The result is plotted in Fig. 4.1. For
an array in the trivial configuration (ti = 12 µm, tx = 24 µm), we thus expect alternating couplings of (157,
106) MHz, while they are swapped for the topological configuration. In the normal configuration, the average
inter-resonator coupling is expected to be around 133 MHz.
From these simulations, we also take notice of a possible non-negligible second neighbour coupling in the arrays:
Resonators separated by more than one resonator width (> 50 µm) still exhibit coupling constants around
50 MHz (see Fig. 4.1).

Fig. 4.1: Simulation of Dimer. a) Schematic of simulated Dimer. The two variables, distance d and separation to the
feedline Sr are marked. b) Simulated S21 spectrum for d = 12 µm, Sr = 24 µm. The frequency spacing |f2 − f1| is equal
to 2J . c) Coupling constant J as a function of dimer separation d. The values for (d = 12 µm, Sr = 24 µm), (d = 18 µm,
Sr = 18 µm) and (d = 24 µm, Sr = 12 µm) are highlighted since those parameters were used in the trivial, normal and
topological configuration of the simulated and measured resonator arrays.

4.2 Array

The resonator arrays are simulated using Sonnet, with a kinetic square inductance L□ =160 pH/□. Moreover,
calculations from an ABCD circuit model and a tight-binding model provide a tool to study the influence of
particular parameters of the system on the metamaterial transmission spectrum. In Section 4.2.1, we report
the results of Sonnet simulations performed on arrays with a growing number of unit cells. The discussion
is extended in the next subsection by observing the simulated current density distributions for the different
modes of the array. In Section 4.2.3, the influence of second-neighbour coupling on both transmission spectrum
and current distribution is studied. Lastly, the influence of the feedline coupling and deviations in resonance
frequency on the transmission spectrum are investigated.

4.2.1 S21 Transmission Spectra

In a first step, the evolution of the S21 transmission spectrum with increasing unit cell number N is investi-
gated. Transmission spectra for N=(2,4,8,16) unit cells simulated with Sonnet are plotted in Fig. 4.2. In all
arrays, the same spacings were chosen for the three configurations, namely (di, dx)=(18,18) µm for normal and
(di, dx)=(12,24) µm for trivial and swapped for topological, respectively.
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Looking at all spectra, one can point out general features. An array of N unit cells shows 2N peaks in
transmission. Those transmission modes (peaks) are spaced more densely with increasing N . Focusing on the
normal configuration (left column in Fig. 4.2), one can see that the passband span ≈ 4J is roughly the same
for all N . This is expected since in all arrays, the inter-resonator coupling J is the same. Hence, for instance,
in an array with 16 resonators (N = 8), the peaks are more densely spaced than in a octamer (N = 4) for the
same passband span. The same reasoning applies for the two other configurations (trivial, topological) as well.
Moreover, in all spectra, the transmission amplitude is at a maximum inside the band and decreases towards
the edges of the passband on both sides. The trend is more pronounced for higher N . An explanation for this
passband shape is provided below in Section 4.2.2. Lastly, the transmission amplitude generally decreases for
increasing N (compare y-axis labels in Fig. 4.2). The more sites an array has, the more opportunities present
itself for a microwave photon travelling through to escape the array into the environment. Hence, higher losses
and lower transmission amplitude are expected for longer arrays.
Now we focus on the trivial and topological configuration. As expected, a middle band gap opens in the array
spectrum for the trivial and topological configuration. In the topological arrays, two peaks, the HEMs, reside in
the center of the middle band gap. They are further studied in Sections 4.2.2 and 4.2.3. The frequency spacing
of these HEMs corresponds to a certain degree of hybridisation between the edge modes. The presence of these
modes in the center of the middle band gap is not a coincidence. Their relative position in the middle band gap
can be tuned via the feedline coupling of the array edges (see Section 4.2.3). As expected, the splitting between
the HEMs decreases for increasing N . The superposition between the photonic envelopes of the edge modes
decreases with the array length. Additionally, their transmission amplitudes also decrease with increasing N .
Since the overlap between the left and right edge mode is reduced with increasing N , the transmission goes
down, reaching zero for zero overlap. As we see later, in this case, the edge modes are still accessible in reflection
(see Section 5.2.5).

Fig. 4.2: S21 Transmission Spectra of Arrays with Sonnet. Simulated S21 transmission spectra for N = (2,4,8,16) unit
cells. For all arrays, the same spacings were used: Normal (di, dx)=(18,18) µm, trivial (di, dx)=(12,24) µm, topological
(di, dx)=(24,12) µm. The square inductance was L□ =160 pH/□.

4.2.2 Current Distributions

Sonnet also provides the option to simulate the current density for the different array modes. It allows us to
get an impression of the mode structure of the array. To couple the resonator array to a qubit, it is valuable
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to know its mode structure. Depending on the specific mode profile, one can determine the best position for
coupling qubits in order to maximise the interaction strength.
All following bar plots were extracted from Sonnet current density simulations of the specified resonator array.
The simulation data was then exported for each site of the array, giving a table of current density values. These
current density values were calculated for each (x,y)-coordinate of the array, with a mesh size of 25 µm in both
directions. In the bar plot, the maximal current density for each site is then plotted.
Being aware of the expected mode structure of the resonator array helps in understanding the transmission
and reflection spectra. For instance, it provides an explanation for the passband shapes observed in Fig. 4.2.
In Fig. 4.3, the maximal on-site current density is plotted for an eight resonator array at each peak in the
transmission spectrum (Fig. 4.2). It can be observed that the current density magnitude on the first and last
side is maximal for modes n = 4, 5 and decreases towards n = 1 and n = 8 respectively. This implies that the
coupling of a mode to the feedline is maximal for n = 4, 5, but minimal for n = 1, 8. The transmission for
modes with low coupling to the feedline is lowered, resulting in the given passband shape.
The same reasoning as above also applies to the other arrays. Their current density profiles can be found in
appendix B for N = 2, 8.
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Fig. 4.3: Simulated Maximal Current Density on Each Site in a Normal, Trivial and Topological Octamer. Simulated
current density maxima |Jxy| on each site for an octamer (N =4). The plots are arranged according to mode number n.

4.2.3 Second-Neighbour Coupling

Introducing second-neighbour coupling Js into the system leads to an asymmetric band structure. Moreover,
the edge states become less localised for increasing Js [25]. To assert whether we have second neighbour coupling
in our system, Sonnet current density simulations are compared to a tight-binding model. The tight-binding
model Hamiltonian is constructed as in Eq. (2.70), with added second neighbour coupling entries Js. The matrix
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for the system thus reads

[H] =



ωr Ji Js 0 0 0 · · · 0 0 0 0

Ji ωr Jx Js 0 0 · · · 0 0 0 0

Js Jx ωr Ji Js 0 · · · 0 0 0 0

0 Js Ji ωr Jx Js · · · 0 0 0 0
... 0 Js

. . .
. . .

. . .
. . . 0 0 0 0

...
... 0 Js

. . .
. . .

. . .
. . . 0 0 0

...
...

... 0
. . .

. . .
. . .

. . .
. . . 0 0

...
...

...
... 0 Js

. . .
. . .

. . . Js 0
...

...
...

...
...

...
. . .

. . .
. . . Jx Js

0 0 0 0 0 0 · · · Js Jx ωr Ji

0 0 0 0 0 0 · · · 0 Js Ji ωr



(4.1)

In Fig. 4.4, the extracted on-site current density amplitudes from Sonnet simulations are plotted for a 16
resonator array. Additionally, the eigenmodes of the Hamiltonian in Eq. (4.1) were numerically calculated
for Js/2π = 0 and 40 MHz. The other parameters were chosen as Ji/2π = 106 MHz, Jx/2π = 157 MHz,
ωr/2π = 4.33 GHz. These are estimated by comparing calculated eigenfrequency spectra for different parameters
with the simulated transmission spectra, as well as the dimer simulations in Section 4.1. For no second-neighbour
coupling, the occupation amplitude on every other site vanishes (see Fig. 4.4). However, that is not what we
observe in the Sonnet current density simulation, implying we have second-neighbour coupling in our resonator
arrays. The current density simulation resembles the eigenmode distribution for Js/2π = 40 MHz.

Fig. 4.4: Second-Neighbour Coupling: HEM Occupation Distribution. Top: Simulated current density amplitude maxima
|Jxy| of mode n = 7 on each site for N = 8 unit cells. Middle: Calculated eigenmode occupation for mode n = 7 with
Js/2π = 0 MHz. Bottom: Calculated eigenmode occupation for mode n = 7 with Js/2π = 40 MHz.

The second-neighbour coupling also influences the S21 transmission spectrum. This can be seen in Fig. 4.5.
The plot shows a modelled S21 transmission spectrum from the tight-binding Hamiltonian. The spectrum is
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obtained by drawing a Lorentzian shape (refer to Eq. (3.2)) centered at each eigenfrequency, with a linewidth
of κ = 0.3 MHz, and summing them up. While the lower passband is compressed, the upper passband expands
relative to no second-neighbour coupling. This also results in a relative shift of the middle band gap compared
to no second-neighbour coupling.

Fig. 4.5: Second-Neighbour Coupling: Transmission Spectrum. The eigenfrequencies of the tight-binding Hamiltonian
in Eq. (4.1) with N = 16, Ji/2π = 106 MHz, Jx/2π = 157 MHz and ωr/2π = 4.33 GHz are plotted as a transmission
spectrum. Top: S21 spectrum from eigenfrequencies of the tight-binding Hamiltonian, with Js/2π = 0 MHz. Bottom: For
non-zero second-neighbour coupling, the eigenfrequencies in the upper (lower) passband are (less) more densely spaced than
for Js = 0 MHz. This compression/ expansion of the pass band leads to a shifted middle band gap.

4.2.4 Displacement of HEMs

The HEMs in topological configuration are expected to lie in the center of the middle band gap. However, they
can be shifted due to the asymmetric coupling environment of first and last resonator. More precisely, if the first
and last resonator have a different capacitive environment, their resonance frequency is shifted in comparison
to the other resonators in the array. This breaks the required symmetry of the SSH model (see Section 2.3.2)
and leads to an asymmetric spectrum. The HEMs no longer lie at the center of the middle band gap. This
can be studied, for instance, by tuning the feedline coupling capacitance Cc and observing its effect on the
transmission spectrum, as plotted in Fig. 4.6. The spectrum is most symmetric for Cc = Cx. This is reasonable,
considering this provides first and last resonator of the array with the same capacitive environment as the
other resonators. The transmission spectrum is calculated following the ABCD formalism in Section 2.3.1 and
applying Eqs. (2.27) and (2.28). The circuit parameters were set as Cr = 13.3 fF, Lr = 89.28 nH, Ci = 0.61 fF
and Cx = 1.22 fF. They were estimated from comparing a ABCD-derived spectrum with a Sonnet-simulated
spectrum for unit cell number N = 4.
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Fig. 4.6: Influence of Feedline Coupling. S21 Transmission spectra calculated from an ABCD Model with N = 4, Cr =
13.3 fF, Lr = 89.28 nH, Ci = 0.61 fF and Cx = 1.22 fF. The three spectra show the influence of different feedline coupling
capacitance Cc in terms of Cx. For mismatched Cc and Cx, the HEM are displaced from the center of the middle band gap
and the spectrum is asymmetric.

Analogously, a variation δ can be introduced in resonance frequency ωr of the first and last resonator in the
tight-binding Hamiltonian formalism:

[H] =


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. . .
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. . . 0 0
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...

...
...

...
...

. . .
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. (4.2)

By plotting the eigenvalue spectra as a function of δ (see Fig. 4.7), it is also evident that for a symmetric
spectrum, the resonance frequency of the first and last resonator must be similar to all other resonators. For
negative δ, the HEMs are shifted towards the lower passband, while for positive δ, they are shifted towards the
upper passband. The passband eigenvalues start to also shift for |δ| ≳ Ji, Jx.

31



Fig. 4.7: Influence of Feedline Coupling. For each value δ/2π, the eigenvalue spectra calculated from tight-binding
Hamiltonian in Eq. (4.2) with N = 8, fr = 4.33 GHz, Ji/2π = 106 MHz and Jx/2π = 157 MHz is plotted. This shows that
a variation δ in resonance frequency ωr of the first and last resonator leads to an asymmetric band spectrum with displaced
HEMs.
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5 Experimental Results

In this section, the main measurement results are presented. First, the measurements from hanged resonators
are summarised in Section 5.1. They serve as a characterisation of the building block of the metamaterial, the
superconducting lumped-element resonators. Second, the principal findings of resonator arrays measurements
are presented in Section 5.2.

5.1 Characterisation of Resonators

As explained above (Section 2.1.1), the resonators were measured in hanged configuration to extract all quality
factors in one measurement. Two devices with different feedline coupling configuration were measured (see
schematics on left in Fig. 5.1)). For both devices, all four resonance frequencies of the four resonators were
visible (see Fig. 5.1). To determine the quality factors for the resonators at low photon number, a power sweep
on each resonance was performed. These sweeps were then fitted with Eq. (3.1).

Fig. 5.1: Overview on Transmission Measurements. Top: First harmonics scan for device 2 at -90 dBm drive power.
All four resonances are visible, as well as standing waves in the background. Bottom: Zoom-in on the resonance dip for a
resonator (on device 1) with inductor length l = 279 µm for three different drive powers (-72, -90, -120) dBm. The data is
baseline-corrected and normalised. Data for drive powers between -90 and -120 dBm was fitted to extract the quality factors.
Above -90 dBm, the fit failed (see -72 dBm), due to the non-linearity of the system.

In Fig. 5.2, the extracted quality factors are plotted as a function of drive power. The internal quality factor
assumes values between 20’000 and 50’000. It converges for low power to the single photon limit. The saturation
at high power could not be observed, since the non-linearity of the system hampers fitting at drive powers above
-90 dBm.

Fig. 5.2: Quality Factors as Function of Input Power. Here shown are the internal quality factor Qi, the loaded quality
factor QL and the coupling quality factor |Qc| for a resonator with inductor length l =279 µm on device 1.

The estimated and measured resonance frequencies are listed in Table 4. The fabricated inductors had a width
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of 470 nm. However, in order to reduce the required time for simulation, a width of 500 nm was chosen for
the simulated device. This difference in inductor width w must be taken into account when setting L□ for
simulations. The resonator has an inductance of approximatively Lk = L□ · ℓ/w, with inductor length ℓ. To
simulate, the targeted L□ = 105 pH in film fabriaction was thus multiplied by 50/47 in order to compensate
for the different geometry. Therefore, the inductance per square was set to L□ = 112 pH/ □ for simulations.
The difference between simulated and measured resonance frequency was about 120 MHz for all four resonators,
indicating an actual sheet inductance of L□ = 102 pH/□ for the measured devices.

Table 4: Resonance Frequencies of the Hanged Resonators. For each resonator on device 1, inductor length l, expected
resonance frequency fr,sim and actual resonance frequency fr,meas are listed. The expected resonance frequency stems from
taking the maximum of the simulated S21 response in Sonnet. The actual resonance frequency was determined from S21

measurements by fitting with Eq. (3.1).

l (µm) fr,sim (GHz) fr,meas (GHz)

250 5.990 6.108

279 5.557 5.650

380 4.520 4.601

500 3.627 3.691

5.2 Arrays

In total, five chips were measured with each one hosting a 16, 24, 32 or 64 LC resonator array in normal, trivial
and topological configuration. Thus, in total, 15 devices were measured. The results presented in the main text
summarise the principal findings of the measured arrays. To avoid redundancy, for each finding, the results are
shown for only one chip. A complete overview can be found in appendix C.

5.2.1 Influence of Geometry of Feedline on Transmission Spectrum

For the 16 resonator array, two different types of feedline geometry were investigated. In a first step, a feedline
providing high capacitive coupling was implemented (see Fig. 5.3, bottom left) to ensure that a transmission
signal could be recorded. Indeed, 16 peaks could be observed in the transmission spectrum for all three con-
figurations. However, this kind of geometry leads to an asymmetric coupling environment of the first and last
resonator in comparison to the “bulk” resonators. In the transmission spectrum, this asymmetry is reflected
by the peak frequencies of the HEMs, which are shifted towards the upper middle band gap edge (beginning
of upper passband, see Fig. 5.3). From Microwave Office Simulations and Section 4.2.4 we observed that one
obtains the most symmetric spectrum if all resonators have the same coupling environment, i.e. when the cou-
pling of the first/last resonator to the feedline is comparable to the inter-cell coupling. This is why we designed
a new kind of feedline, where a “ghost” resonator is galvanically connected to a straight feedline (see grey
schematic in Fig. 5.3, top left). Measurements with this new type of feedline revealed improved symmetry of
the transmission spectra as expected (see Fig. 5.3). This type of feedline was used exclusively for the following
experiments with 32 and 64 resonator arrays.
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Fig. 5.3: Influence of Feedline Geometry on S21 Transmission Spectra of 16 Resonator Arrays. Top: Transmission
spectra for ghost feedline (see grey schematic on left) for normal, topological and trivial configuration, recorded at -85 dBm
drive power. For the topological array (magenta), the HEMs are in the center of the middle band gap, indicating that the
capacitive environment of the first/last resonator is similar to the bulk resonators. Bottom: Transmission spectra for T-shaped
feedline (see grey schematic on left) for normal, topological and trivial configuration, recorded at -85 dBm drive power. For
the topological array (magenta), the HEMs peaks lie at the upper edge of the middle band gap.

5.2.2 Power Sweep

For each device, a power sweep was recorded in order to extract the loaded quality factor and to observe non-
linear behaviour of those resonators. As stated in Section 2.4, non-linearity is an intrinsic property in high
kinetic inductance thin films. With the VNA, the lowest drive power we could still measure was -120 dBm.
The arrays generally conform to a linear description between -78 and -120 dBm drive power. In Fig. 5.4, |S21|
transmission profiles are plotted for different drive powers for the 16 resonator array with “ghost” feedline
geometry. They are displaced by an offset to improve readability. Throughout the whole powersweep, all 16
peaks were visible for all three configurations. The powersweeps for the other arrays can be found in appendix C.
They exhibit similar behaviour.

Fig. 5.4: Power Sweep Measurement of 16 Resonator Array in Normal, Trivial and Topological Configuration. The
transmission amplitude |S21| is plotted for different drive powers. The non-linearity of the system influences the peak shape
for high drive powers. We introduced an offset between datasets for readability.

To better illustrate the non-linearity of the arrays, a powersweep on the HEMs of the 24 resonator array is
plotted in Fig. 5.5. The splitting between the two peaks is distinct. The lower-frequency peak is more shifted
with increasing drive power than the upper-frequency one, because it is more coupled to the feedline used to
drive them in this measurement. It can be seen in Fig. 5.5b that for higher power, the transmission peaks get
deformed and do not follow a Lorentzian curve shape any more, due to non-linearity emerging.
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Fig. 5.5: Power Sweep of 24 Array HEMs. a) The transmission amplitude |S21| as a function of drive power and frequency.
The shifting of the HEMs for high drive powers is an indication of the non-linearity of the system. b/c) Linecut of a) at
-76/-106 dBm drive power. The peak shapes differ from each other, a result of the non-linearity of the metamaterial.

5.2.3 Comparison to Simulation

The measurements were compared to simulated transmission and reflection spectra from Sonnet. Following
the same argumentation as in Section 5.1, the L□ for simulations was set to (125,112) pH /□ for the (16,32)
resonator array. In Fig. 5.6, a measured transmission spectrum of a 16 resonator array (top) is compared to the
simulation (bottom). For a 32 resonator array, transmission and reflection spectra are plotted in Fig. 5.7.
Qualitatively, simulation and measurement exhibit several common signatures. First, their passband envelope
shapes match for both arrays and all three configurations. All passbands have their transmission minima at the
edges, while the maxima lie in the passbands. Second, for the trivial and topological configuration, they both
exhibit lower transmission amplitude for the lower-frequency passband section relative to the higher-frequency
passband. Third, the HEM transmission amplitude for the topological 32 resonator array is small in both
measurement and simulation, but high in the topological 16 resonator array. On the other hand, in reflection,
the topological 32 resonator array features a prominent HEM for both measurement and simulation. Fourth, in
both measurement and simulation, the lower passband looks compressed in comparison to the upper passband
for the trivial and topological configurations. This is attributed to non-negligible second-neighbour coupling in
our arrays, as illustrated in Fig. 4.5.

Fig. 5.6: Measured and Simulated Transmission Spectra for 16 Resonator Array in Normal, Trivial and Topological
Configuration. Core features, such as envelope shape, transmission behaviour and shape of upper and lower passband, of
the simulated spectra could be observed in measured data as well. Top: Measured S21 amplitude for -85 dBm drive power.
Bottom: Simulated S21 amplitude for a superconducting material with L□ = 125 pH /□ and tan δ = 10−7 tangential loss.
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Fig. 5.7: Transmission and Reflection Spectra for 32 Array in Normal, Trivial and Topological Configuration. First
row: Measured S21 amplitude for -90 dBm drive power. Second row: Simulated S21 amplitude for a superconducting material
with L□ = 112 pH /□ and tan δ = 10−7 tangential loss. Third row: Measured S22 amplitude for -90 dBm drive power.
Fourth row: Simulated S22 amplitude for a superconducting material with L□ = 112 pH /□ and tan δ = 10−7 tangential loss.
For both reflection and transmission spectra, simulation and measurement agree on core features such as pass band shape,
relative amplitude height of HEMs in comparison to pass band peak amplitudes and compression of the lower passband due
to second-neighbour coupling.

The discrepancy in the lower part of the passband measured in the trivial configuration of the 32 resonator
array (see petrol blue curve in the first row of Fig. 5.7) likely stems from a defect in the microwave feedline of
port 1, for the tested device. This can be seen in the third row of Fig. 5.7, where the reflection profile from
microwave port 2 is plotted (petrol blue curve). All modes are clearly visible, which indicates that the device
is working properly.

5.2.4 Decay Rate and Density of States

By fitting each transmission peak with a Lorentzian (see Eq. (3.2)), its central frequency fp and line width κtot

were extracted. Fitting was applied to data between -78 and -120 dBm drive power. Above -78 dBm, the
peaks were shifted due to non-linear effects prevailing (see Fig. 5.5). In Fig. 5.8, the values are plotted for
the 32 resonator array. The values at the band edges diverge since the fit protocol fitted those peaks with a
broader shape than they actually were (see Fig. 5.8c). The peaks at the band edges have a significantly lower
amplitude in comparison to the ones in the centre of the passbands. This reduces the accuracy of the fit, as the
background noise becomes comparable in amplitude with the peaks themselves. In Fig. 5.8, only values of κtot,
where the error is less than 10% of the value, are considered. The decay rates κtot for all three configuration
lie between 3.4 and 0.14 MHz. The HEMs of the topological array exhibit higher decay rates than pass band
modes, because they are localised at the resonators at the edge and thus couple more strongly to the feedline.
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Fig. 5.8: Total Coupling Rate κtot as a Function of Peak Frequency fp for 32 Resonator Array. a) The error bars indicate
the fitting errors. Only values which have an error less than 10% of the value are included. Values at the pass band edges
diverge since they are overestimated by the fit. The HEMs of the topological array exhibit high decay rate as they are directly
are localised at the resonator directly coupled to the feedline. b) Exemplary good fit to the data, c) for lower power and
frequencies at the edge of the passband, the fit over-estimates the line width.

Plotting the differences in frequency between neighbouring peaks against peak frequency (or mode number n)
provides information on the mode density in the passband (see Fig. 5.9). In Fig. 5.9, the dot in the cen-
ter of the middle band gap in topological configuration quantifies the frequency splitting of the hybridised
edge modes. Table 5 summarizes information about the band structures for the different configurations, i.e.
passband sizes in MHz. The passbands of the trivial and topological band structure have similar values.
This is expected since they have roughly the same total capacitance and inductance, i.e. same total cou-
pling J in the system, and the total passband span is equal to ≈ 4J . For the normal configuration, the
passband spans 534 MHz, giving an estimate for the coupling rate J ≈ 133.5 MHz, which is consistent with
the estimate from dimer simulations (133 MHz, see Section 4.1). On the other hand, the extracted middle
band gap for trivial (topological) configuration 119 (112) MHz, is a tad higher than estimated: In dimer
simulation, (Ji/2π, Jx/2π) = (105, 157) MHz, which gives a middle band gap of 2(157 − 105) = 104 MHz.
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Fig. 5.9: Frequency Spacing as a Function of Peak Fre-
quency. The frequency spacing ∆f0 between neighbouring
peaks is plotted against the peak frequencies f0 for the 32 res-
onator array. This provides information on the mode density
in the passband. The value in the middle band gap of the
topological configuration quantifies the HEM splitting.

Table 5: Band Structure Values for 32 Resonator Array.
The abbreviations stand for passband (PB), lower passband
(LPB), upper passband (UPB), middle band gap (BG) and
splitting of HEMs (TPS). The reported values are extracted
from fitted S21 measurements for drive powers between -78
and -114 dBm. For the passbands, the maximal value over
all power spectra was taken (most likely to contain all peaks).
Conversely, the minimal value was chosen for the middle band
gap, following the same logic. The TPS value is the average
over all obtained values. For all parameters, the extracted val-
ues lie in ±5% of the listed value in the table.

Normal

LPB (MHz)

534

Topological

PB (MHz) UPB (MHz) BG (MHz) TPS (MHz)

150 260 119 MHz 3.4 MHz

Trivial

LPB (MHz) UPB (MHz) BG (MHz)

157 264 112

5.2.5 Evolution of Topological Peak Amplitude With Number of Resonators

The HEM transmission amplitudes decrease with increasing resonator number. In our arrays, the HEMs are still
visible in the S21 spectrum for 32 resonators (see Fig. 5.7), but not for 64 resonators (see top middle in Fig. 5.10).
This behaviour is expected since the (left and right) edge mode amplitudes are exponentially suppressed in the
bulk of the resonator array. Therefore, their overlap decreases when increasing the array length. It seems that,
given our device parameters, the overlap for 64 resonators is too small for their transmission in the bulk to
be detected. However, since each edge mode is localised at the boundary, it should be clearly visible while
measuring in reflection, from the microwave port coupled to the edge resonator. Indeed, we observe a very
prominent edge mode in S22 reflection measurements (see bottom of Fig. 5.10). Since there is no detectable
overlap between the two edge modes, only the left edge mode is probed in S22 reflection. For S11, the right
edge mode is visible (see appendix C.5, Fig. C.12)).
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Fig. 5.10: 64 Resonator Array in Transmission and Reflection. All data was recorded at -96 dBm drive power. Top: S21

transmission amplitude, bottom: S22 reflection amplitude. In reflection, standing waves in the measurement line affect the
baseline. In the topological array, no state is visible in the middle band gap for transmission, but can be probed in reflection
since it is localised at the boundary (compare black arrows).

While the HEMs vanish in transmission for N = 16, 32, they can be probed in reflection. This trend was also
observed in a more recent cooldown (Fig. 5.11). For the data shown in Fig. 5.11, the signal to noise ratio
is increased considerably due to adding a room temperature amplifier directly in front of the VNA (refer to
Fig. 3.9 for prior set up). This permitted clean data collection at low drive powers without excessive averaging
(see Fig. 5.11).

Fig. 5.11: Topological Resonator Arrays in Transmission and Reflection. All data was recorded at -120 dBm drive power.
Top: S11 reflection amplitude, bottom: S21 transmission amplitude. From left to right, the unit cell number increases:
N = 8, 16, 32.
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5.2.6 Engineering the Band Spectrum

By varying the inter- and intra-cell spacing tx, ti (and thus the coupling capacitances Cx, Ci), properties of the
metamaterial such as middle band gap and passband span can be tuned.
For the data presented in this subsection, the inter- and intra-cell spacing were (tx, ti)=(8,12) µm respectively for
topological configuration and swapped for trivial configuration. The spacing was chosen to be tx = ti = 10 µm
in normal configuration. In comparison to prior spacing pair of (tx, ti)=(12,24) µm, the couplings are expected
to be increased, due to over-all decreased inter-resonator spacing.
A rough estimation by eye from Fig. 5.12 gives a passband span around 760 MHz for the 32 resonator array,
i.e. a coupling J ≈ 760/4 ≈ 190 MHz, which is indeed higher than extracted for the normal 32 resonator array
with tx = ti = 18 µm (J ≈ 133.5 MHz, see Section 5.2.4).

Fig. 5.12: Normal Resonator Arrays in Transmission and Reflection. All data was recorded at -102 dBm drive power. Top:
S11 reflection amplitude, bottom: S21 transmission amplitude. From left to right, the unit cell number increases: N = 16, 32.

On the other hand, the middle band gap in trivial and topological configuration (see Figs. 5.13 and 5.14) is
expected to be smaller for (tx, ti)=(8,12) µm than (tx, ti)=(12,24) µm because the difference in intra- and inter-
cell coupling is lower. This expectation is also met, with an estimated middle band gap of (70,100) MHz for
(trivial, topological) configuration (compare with Table 5, 112 and 119 MHz).
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Fig. 5.13: Trivial Resonator Arrays in Transmission and Reflection. All data was recorded at -102 dBm drive power. Top:
S11 reflection amplitude, bottom: S21 transmission amplitude. From left to right, the unit cell number increases: N = 16, 32.

Moreover, the localisation length ζ of the HEMs in topological configuration is expected to be longer than
in arrays with (tx, ti)=(12,24) µm, because the ratio Jx/Ji is expected to be smaller. Thus, the overlap be-
tween the edge modes is, for a given N , expected to be higher in arrays with (tx, ti)=(8,12) µm, compared to
(tx, ti)=(12,24) µm. Indeed, this seems to be the case as the HEMs have non-vanishing transmission amplitude
for both N = 16 and N = 32 (see Fig. 5.14).

Fig. 5.14: Topological Resonator Arrays in Transmission and Reflection. All data was recorded at -102 dBm drive power.
Top: S11 reflection amplitude, bottom: S21 transmission amplitude. From left to right, the unit cell number increases:
N = 16, 32. In both arrays, the HEMs are visible.
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6 Conclusion

After presentation and discussion of the principal findings in Section 4 and Section 5, they are briefly recapped
here and conclusions are drawn.
In Section 4, the designed coupled resonator array was simulated with Sonnet. This allowed pre-fabrication
engineering of the device parameters, by interpreting simulated transmission responses from the arrays. Fur-
thermore, simulations of the current density of the array modes provided deeper insight into the underlying
physics of the system. The simulations were complemented with numerical calculations from ABCD circuit
models of the resonator arrays, as well as from a tight-binding Hamiltonian description. From simulation and
modelling, a non-negligible second-neighbour coupling was discovered for our resonator array. The observations
of Section 4 in simulation could be reproduced in measurements in Section 5.2. It is thus concluded that Sonnet
simulations, as well as a lumped-element circuit model and tight-binding description of the resonator array form
a well-suited tool box for understanding the coupled resonator array physics.
In Section 5, the coupled resonator arrays were probed experimentally. The internal quality factor of the
resonators at low photon number lies between 10’000 and 30’000, as estimated by measuring resonators in hanged
configuration in Section 5.1. For future applications, is it desirable to reach internal quality factors > 105. Thus,
a study on loss mechanisms of our system should be a next step.
As just mentioned, the resonator array measurements were consistent with simulations. The results presented
in this thesis thus provide a solid basis for further research. The investigated metamaterial allows for flexible
engineering of its band spectrum by tweaking its geometrical parameters. It is a suitable platform to study the
SSH model and allows exploitation of topological edge state physics.
There is room for optimisation, namely in choice of geometric parameters such as waveguide dimensions, res-
onator inter-spacing and resonator dimensions, to allow precise and deliberate engineering of the passband
spectrum. Moreover, the influence of inter-resonator grounding (“ground strips” in Fig. 3.2) on the frequency
response can be further investigated and optimised.
Furthermore, a more advanced modelling and fitting routine for the resonator arrays should be developed. In
this thesis, circuit parameters for lumped-element circuit models were estimated by hand. In the future, a
method to extract the circuit parameters of a given resonator array from measurement is required for more
accurate modelling. The same applies for extraction of loss and coupling rates.
All in all, the metamaterial presented in this thesis is deemed a promising candidate for realisation of a bosonic
multimode environment for analog quantum simulation.

7 Outlook

In this section, a brief overview of ongoing research in the group related to coupled resonator arrays is provided.

7.1 Hexagonal Lattice

Instead of restricting ourselves to one-dimension, coupled resonator arrays can also be realised in two dimen-
sions, as an implementation of a two-dimensional SSH model with topologically protected edge states [42]
and as a study of second-order topological modes [43]. For this, a hexagonal lumped-element resonator was
designed, allowing the coupling of one resonator to three others. With this kind of resonator geometry, a
two-dimensional resonator lattice can be built. This two-dimensional coupled resonator array was successfully
fabricated (Fig. 7.1) and will be further investigated.
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Fig. 7.1: Hexagonal Coupled Resonator Array. Each resonator has an inductor to ground and three capacitances for
coupling. a) SEM image of a two-dimensional hexagonal resonator array. b) Zoom-in of a), showing the coupling capacitances
between two resonators. c) One-dimensional hexagonal resonator array.

7.2 Coupling to Transmon

After a preliminary study of the implemented multimode bosonic environment, the next step is to couple it to
a qubit. For this, a 88 resonator array was successfully fabricated and measured (see Fig. 7.2).

Fig. 7.2: Reflection and Transmission Spectra for 88 Resonator Array in Normal, Trivial and Topological Configuration.
Top: S22 reflection amplitude spectra, recorded at -120 dBm drive power. Bottom: S21 transmission amplitude spectra for a
drive power of -120 dBm.

Two approaches are in preparation (see Fig. 7.3). The first one is to couple a transmon to the central part of an
88 resonator array in trivial configuration. The second approach uses a cooper pair box coupled at one site to
an 88 resonator array in normal configuration. The goal is to reach and study the ultra-strong coupling regime
with the array.
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Fig. 7.3: Coupling Resonator Array To Qubit. a) A transmon is coupled to the central part of an 88 resonator array in
trivial configuration. b) A cooper pair box can be coupled at one site to an 88 resonator array in normal configuration.

7.3 Study of Array Non-Linearity

As mentioned in Section 2.4 and briefly shown in Fig. 5.5, our metamaterial exhibits non-linear behaviour at
high drive power (see Fig. 7.4). At high drive power, one can expect the resonators to behave like Duffing
oscillators, which exhibit bistable behaviour [44]. A future goal is to exploit this property to study dissipative
phase transitions [45].

Fig. 7.4: Non-Linearity of Resonator Arrays. Powersweep on mode n = 7 for a 64 resonator array in normal, topological
and trivial configuration. For high drive powers, the peak resembles a shark fin.
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M. Mirhosseini, and O. Painter, “Quantum electrodynamics in a topological waveguide,” Physical Review
X, vol. 11, p. 011015, Jan 2021.
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A Derivation of SSH Model

Su, Schrieffer and Heeger published a theoretical study on polyacetylene (see Fig. A.1) in 1979, which focussed
on describing electrons hopping along this one-dimensional chain with alternating hopping amplitudes [23].
This study is now known as Su-Schrieffer-Heeger (SSH) model and can generally be employed to study spinless
fermions in a one dimensional lattice with staggered hopping amplitudes. Henceforth, the spinless fermions are
addressed as particles.
Following reference [24], the SSH model is introduced in this section. For the whole discussion, we use units
where ℏ = 1. In the SSH model, one considers N unit cells of size L, each having two sites A and B (see Fig. A.1).
Interactions between the hopping particles are neglected. The system is at zero temperature and zero chemical
potential. Energies are measured relative to the Fermi energy. The staggered hoppling amplitudes are denoted t
for intra-cell hopping and γt for inter-cell hopping, where t, γ ≥ 0 are assumed for simplicity. The states of
the chain are described with |n, S⟩, where n is the index of the unit cell (n ∈ {1, 2, . . . , N}) and S ∈ {A,B}
specifies on which site the particle resides. Now, for intra-cell hopping, in the n-th unit cell, there are two
possible processes:

|n,A⟩ −→ t|n,B⟩ =⇒ Hamiltonian term t|n,B⟩⟨n,A|
|n,B⟩ −→ t|n,A⟩ =⇒ Hamiltonian term t|n,A⟩⟨n,B| (A.1)

On the other hand, inter-cell hopping also occurs from B to A and vice versa:

|n,B⟩ −→ γt|n+ 1, A⟩ =⇒ Hamiltonian term γt|n+ 1, A⟩⟨n,B|
|n+ 1, A⟩ −→ γt|n,B⟩ =⇒ Hamiltonian term γt|n,B⟩⟨n+ 1, A| (A.2)

The Hamiltonian is thus given by summing the processes in Eqs. (A.1) and (A.2) over all unit cell indices n

ĤSSH = t

N∑
n=1

(|n,B⟩⟨n,A|+ |n,A⟩⟨n,B|) + γt

N−1∑
n=1

(|n+ 1, A⟩⟨n,B|+ |n,B⟩⟨n+ 1, A|) (A.3)

Note that the Hamiltonian is not taking the spin degree of freedom into account as there is no term acting on
the spin. If one was to describe a real life system, two copies of Eq. (A.3) would be needed to make up the
Hamiltonian for the system.

Fig. A.1: 1D SSH Model. Top: Chemical structure of polyacetylene, bottom: Schematic of the SSH model with sites A and
B composing the unit cell (grey dotted frame). The hopping amplitudes are denoted t (γt) for intra- (inter-) cell hopping.
The unit cell is of dimension L.

Using {|n, S⟩, n ∈ {1, 2, . . . , N}, S ∈ {A,B}} as a basis, the Hamiltonian can be written in matrix form as

HN=4 =



|1, A⟩ |1, B⟩ |2, A⟩ |2, B⟩ |3, A⟩ |3, B⟩ |4, A⟩ |4, B⟩
⟨1, A| 0 t 0 0 0 0 0 0
⟨1, B| t 0 γt 0 0 0 0 0
⟨2, A| 0 γt 0 t 0 0 0 0
⟨2, B| 0 0 t 0 γt 0 0 0
⟨3, A| 0 0 0 γt 0 t 0 0
⟨3, B| 0 0 0 0 t 0 γt 0
⟨4, A| 0 0 0 0 0 γt 0 t
⟨4, B| 0 0 0 0 0 0 t 0


(A.4)

for N = 4 unit cells.
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Alternatively, the unit cell index n and the site index S can be treated as external and internal degrees of
freedom and the Hamiltonian can be expressed as a tensor product

ĤSSH = Ĥext︸ ︷︷ ︸
basis {|n⟩}

⊗ Ĥint︸ ︷︷ ︸
basis {|S⟩}

(A.5)

A.1 Bulk Hamiltonian

For further consideration, the chain is split into bulk and boundary. The boundary denotes the two ends of the
chain. The bulk is everything in between the two ends. For a long enough chain, the bulk is not influenced by
the edges and can thus be treated as an infinite chain with periodic boundary conditions (Born-von Karman
boundary condition). One can think of as taking the chain and closing it to form a ring. For N bulk unit cells,
thus the (N + 1)-th will be equivalent to the first unit cell. The bulk Hamiltonian hence becomes

Ĥbulk =

N∑
n=1

t (|n,B⟩⟨n,A|+ |n,A⟩⟨n,B|) + γt (|(n mod N) + 1, A⟩⟨n,B|+ |n,B⟩⟨(n mod N) + 1, A|) (A.6)

where the modulo (mod) reflects the periodicity of the chain [24]. In the next step, the eigenstates |Ψl(k)⟩ of
this Hamiltonian,

Ĥbulk|Ψl(k)⟩ = El(k)|Ψl(k)⟩, l ∈ {1, 2, . . . , 2N} (A.7)

are to be determined. Due to the periodic boundary conditions, the system possesses a translation invariance
and thus, the Bloch theorem can be applied. Similar to Eq. (A.6), the eigenstates can be written as a tensor
product between the internal and external degrees of freedom. After application of the Bloch theorem on the
external degree of freedom (unit cell index n), the eigenstates read

|Ψl(k)⟩ = |k⟩ ⊗ |ul(k)⟩ =
1√
N

N∑
n=1

eiLnk|n⟩ ⊗ (al(k)|A⟩+ bl(k)|B⟩) (A.8)

where the wave number k takes values in the first Brillouin zone: k = m·2π/(NL), m ∈ {−N/2, ..., N/2} [24, 42].
The eigenstates of the internal degree of freedom (site index S) can be found upon projection of the Hamiltonian
on the momentum space (i.e. applying a Fourier transformation). This bulk momentum-space Hamiltonian Ĥ(k)
is given by

Ĥ(k) =
〈
k
∣∣∣Ĥbulk

∣∣∣k〉 (A.8)
=

(
1√
N

N∑
m=1

e−iLmk⟨m|

)
Ĥbulk

(
1√
N

N∑
n=1

eiLnk|n⟩

)
=

(⋆)
=

1

N

N∑
n=1

(
e−iLnkt|B⟩⟨A|eiLnk + e−iLnkt|A⟩⟨B|eiLnk + e−iL(n+1)kγt|A⟩⟨B|eiLnk + e−iLnkγt|B⟩⟨A|eiL(n+1)k

)
=

= t(1 + γe−iLk)|A⟩⟨B|+ t(1 + γeiLk)|B⟩⟨A| (A.9)

using that ⟨m|n⟩ = δmn (⋆). The states |ul(k)⟩ can now be identified as the eigenstates of the momentum-space
Hamiltonian,

Ĥ(k)|ul(k)⟩ = El(k)|ul(k)⟩ (A.10)

or in matrix form

H(k) =

 0 t(1 + γe−iLk)

t(1 + γeiLk) 0

 (A.11)

=⇒ H(k)

al(k)

bl(k)

 = El(k)

al(k)

bl(k)


using {|A⟩, |B⟩} as a basis. The eigenvalues E(k) of Eq. (A.11) are readily calculated using the fact that

H(k)2 =

 0 t(1 + γe−iLk)

t(1 + γeiLk) 0

 0 t(1 + γe−iLk)

t(1 + γeiLk) 0

 = |t+ γte−iLk|2
1 0

0 1

 , (A.12)

so H(k)2 has a double eigenvalue E(k)2 = |t+ γte−iLk|2, meaning

E±(k) = ±
√
|t+ γte−iLk|2 = ± t |1 + γe−iLk| = ± t

√
1 + γ2 + 2γ cos(Lk). (A.13)

51



For γ ̸= 1, the energy dispersion has a gap

2∆ = min
k

(E+(k)− E−(k)) = E+(±
π

L
)− E−(±

π

L
) = 2t|γ − 1|. (A.14)

The energy dispersion for different γ is plotted in Fig. A.2. Depending on the value of γ, one can distinguish
between four different regimes:

↪→ γ = 0: The chain consists of isolated dimers, as the inter-cell hopping term γt is zero. This regime is
named fully dimerised chain.

↪→ 0 < γ < 1: The intra-cell hopping amplitude is larger than the inter-cell hopping term. The dispersion
has a gap of size 2∆ = 2t(1− γ). This regime is called trivial.

↪→ γ = 1: Intra- and inter-cell coupling are equal, the energy gap is closed. We further refer to this
configuration as normal.

↪→ γ > 1: The inter-cell hopping amplitude is larger than the intra-cell hopping term. An energy gap
of 2∆ = 2t(γ − 1) opens. This is the topological regime.

Fig. A.2: Energy Dispersion E(k) of the Bulk SSH Model. The energy gap is shaded in blue. The four plots correspond to
four regimes, depending on the value of γ: fully dimerised (γ = 0), trivial (0 < γ < 1), normal (γ = 1) and topological (γ > 1).

Even though trivial and topological regime seem equivalent from looking at their dispersion relation, they exhibit
fundamentally different physics. As hinted by the name, they can be distinguished topologically. For this, one
defines the 3-dimensional vector d⃗(k) with entries

d⃗(k) =


dx

dy

dz

 =


t+ γt cos(kL)

γt sin(kL)

0

 (A.15)

This form is derived from comparing H(k) of Eq. (A.11) to the general model of a two-band system [24]:

H(k) = dx(k)σ̂x + dy(k)σ̂y + dz(k)σ̂z + d0(k)σ̂0 (A.16)

with the Pauli matrices σx, σy, σz and the 2× 2 identity matrix σ0.

As can be seen from Eq. (A.15), the end point of d⃗(k) describes a circle in the (dx, dy) plane as k goes from −π/L
to π/L through the Brillouin zone. This circle has radius γt and center (t, 0). For this circle, one can define the
integer winding number ν, which counts how many times the trajectory encircles the origin. For a radius γt
bigger than t, the winding number ν = 1, as the origin lies in the circle. Using this winding number, one can now
distinguish between trivial and topological regime (see Fig. A.3): For trivial, ν = 0, whereas in the topological
case, ν = 1. In the case of γ = 1, the winding number is undefined as the origin is part of the loop. This
winding number ν is a so-called topological invariant: It remains unchanged under adiabatic deformations [24].
Here, it means that one cannot go from a trivial to topological configuration without closing the energy gap.
This closing of the energy gap is reflected in the discontinuity in ν at γ = 1.
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Fig. A.3: Trajectory of d⃗ in (dx,dy) Plane. The origin is emphasised with the blue dot. Left: For γ < 1, the loop does not
encircle the origin, so the winding number is ν = 0. Middle: The winding number ν is undefined for γ = 1 as the trajectory
crosses the origin. Right: For γ > 1, ν is 1 since the origin is enclosed in the circle.

A.2 Edge States

In the topological regime, the boundary of the chain hosts two edge states. One is localised at the right end of
the chain and one on the left end. The two edge states are henceforth called |R⟩ and |L⟩. Their energy is on
the order of E = e−N/ξ ≪ ∆, where ξ is the localisation length

ξ =
1

log((γt)/t)
=

1

log(γ)
. (A.17)

Their energy lies within the bulk band gap, where no states are available. Hence, the edge states decay
exponentially towards the middle of the chain. State |R⟩ only has occupation on sites A whereas state |L⟩ only
resides on sites B. These two edge states have an exponentially small overlap and will thus hybridise. The
resulting symmetric and antisymmetric superpositions

|Ψsym⟩ =
1√
2

(
e−iϕ/2|L⟩+ eiϕ/2|R⟩

)
(A.18)

|Ψanti⟩ =
1√
2

(
e−iϕ/2|L⟩ − eiϕ/2|R⟩

)
(A.19)

ϕ ∈ [0, 2π[

appear as available states in the middle of the band gap at almost zero energy. This can be seen in Fig. A.4,
where the eigenvalues of the SSH Hamiltonian in Eq. (A.3) are plotted as a function of the inter-cell hopping
amplitude for N = 8 unit cells. The intra-cell hopping amplitude t is set to 1. For γ < 1, the system is in the
trivial regime. Two bands with each 8 energy states are separated by a band gap. As γ → 1, the two states at
the edge of the band gap (index l = 4, 5) approach each other until there is no band gap for γ = 1. However,
for γ > 1, these two states converge to lie at almost zero energy and the band gap re-opens. These almost-zero
energy states are the two superpositions |Ψsym⟩ and |Ψanti⟩ of the edge states |R⟩, |L⟩. Their wavefunction is
plotted in Fig. A.4 for t = 1, γ = 2.
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Fig. A.4: Eigenenergies as a Function of Inter-cell Coupling. The eigenenergies and eigenstates were calculated in
Mathematica using the SSH Hamiltonian matrix for N = 8; analogous to Eq. (A.4). Left: Eigenvalues of Eq. (A.3) as a
function of inter-cell coupling γt, with t = 1. For γ < 1, there are no edge states in the band gap (trivial regime, green). In
the topological regime (γ > 1, blue), almost-zero-energy states appear in the middle of the band gap. Right: Wavefunction of
the two almost-zero-energy states. They are the symmetric and antisymmetric superpositions of the edge states |L⟩ and |R⟩.
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B Supplementary Simulation Data

In this appendix, supplementary current density simulation data is shown. The bar plots show the maximum
current density magnitude on each site of the array, extracted from current simulations in Sonnet. Each bar
plot corresponds to one mode number n.

B.1 4 LC Array with Ghost Feedline

Fig. B.1: Current Density Simulation Data for Tetramer in Normal, Trivial and Topological Configuration. Maximal
current density on each site. The sites are labelled with N(A,B) for the first (A) or second (B) position in the N -th unit cell.
The index n denotes the mode number.
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B.2 16 LC Array with Ghost Feedline

Fig. B.2: Current Density Simulation Data for 16 LC Resonator Array in Normal, Trivial and Topological Configuration.
Maximal current density on each site. The sites are labelled with N(A,B) for the first (A) or second (B) position in the N -th
unit cell. The index n denotes the mode number.
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C Supplementary Measurement Data

In this section, supplementary measurement data from both hanged resonator and resonator arrays are shown.

C.1 Hanged Resonators

In this section, all extracted quality factors for both measured devices are plotted.

Fig. C.1: Internal Quality Factor versus Input Power for Device 1.

Fig. C.2: Coupling Quality Factor versus Input Power for Device 1.

Fig. C.3: Loaded Quality Factor versus Input Power for Device 1.

Fig. C.4: Internal Quality Factor versus Input Power for Device 2.
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Fig. C.5: Coupling Quality Factor versus Input Power for Device 2.

Fig. C.6: Loaded Quality Factor versus Input Power for Device 2.

C.2 16 LC Array with T-shaped Feedline

Fig. C.7: Power Sweep of 16 Resonator Array with T-shaped Feedline.
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C.3 16 LC Array with Ghost Feedline

Fig. C.8: EBL Mask for Etching the 16 Resonator Arrays.

Fig. C.9: Power Sweep of 16 Resonator Array with Ghost Feedline.
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C.4 32 LC Array with Ghost Feedline

Fig. C.10: Power Sweep of 32 Resonator Array.
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C.5 64 LC Array with Ghost Feedline

Fig. C.11: Power Sweep of 64 Resonator Array.

Fig. C.12: Reflection Spectra for Topological 64 Resonator Array. Top: S11 reflection amplitude for -96 dBm drive power.
Bottom: S11 reflection amplitude for -96 dBm drive power, as shown in Fig. 5.10 of the main text.
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