


Abstract: Current trends in miniaturization indicate the reduction in size of all
electronic devices, and satellites are no exception. Drawing from progress in wireless
sensor network technology, microsystems can potentially be used in such space-based
networks. This project considers the deployment of small-scale satellites into orbital
trajectories. In particular, a low mass, low cost attitude controller for a minirocket is
designed and tested. State estimation, open loop �ight control, and closed loop feedback
actuation are all demonstrated on this platform, leading the way for a small scale system
to deliver a 10g payload into low Earth orbit.
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1 Introduction

Wireless Sensor Networks (WSNs) are of increasing interest in both academia and indus-
try. Distributed sensing, processing, and communication have far reaching applications;
indeed WSNs have found their way to all varieties of settings around the world, from
oceans to plains to mountains to urban environments [2]. There is considerable ongoing
research employing WSNs for their distributed nature, as well as research into WSNs
themselves in areas such as reliability and robustness, communication theory, and dis-
tributed algorithms.
An area not yet in�ltrated by WSNs though is space � orbits above Earth's atmosphere

and beyond are still dominated by large one-o� spacecraft. Only recently has there been
analysis of potential deployments in space (such as in [3], [4]). Such satellite systems
would be able to address fundamental WSN research in the absence of notable interference
from ground based sources and physical obstacles, as well as conduct atmospheric and
astronomical research. As the availability and functionality of electronics go up and the
cost goes down, the required hardware becomes smaller, cheaper, and more accessible.
While previous small satellite research has focused on systems on the order of kilograms,
sensor nodes have shrunk to where a 10 gram system is su�ciently powerful for many
purposes.
This thesis addresses the issue of deploying such sensor nodes into a low Earth orbit

(LEO) for applications in space-based WSNs. In particular, this thesis begins to examine
a small scale rocket-based solution for delivering a 10 gram payload to a desired orbital
trajectory. The additional di�culty in miniaturizing a satellite deployment system is
o�set by the drastically lower cost and risk factors compared to current options.
Ultimately, a launch vehicle (LV) should be of comparable scale and cost to the payload

mote being deployed. A full launch solution will also require careful rocket and propellant
design; this paper mainly focuses on miniaturizing a control system to be used to guide
the LV into a desired trajectory. The hardware developed here is applicable as a �nal
stage in orbital insertion � a rocket is designed and built using low cost, o�-the-shelf
components to estimate and control attitude alone. A high altitude balloon launch,
additional minirocket stages, or piggybacking o� of a large scale rocket can be used to
get such a system to an approximate trajectory �rst.
An overview of rocket systems and the di�culties in their miniaturization is presented

in chapter 2. The speci�c hardware designed in this work is described in chapter 3, with
an explanation of the experimental setup in chapter 4 and some testing results and their
discussion in section 5. The �nal chapter o�ers some conclusions and avenues for future
research.
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2 Background

2.1 Reaching Low Earth Orbit

2.1.1 Energy and ∆v budget

The e�ort needed to execute any orbital maneuver is commonly described by the scalar
∆v or delta-v, referencing a change in velocity. In order for a LV to reach LEO from rest
on the surface of the Earth, the required ∆vleo is composed as follows [5]:

∆vleo = vo + ∆vd + ∆vg + ∆vc + ∆vatm − vrot. (2.1)

The �rst term of equation (2.1), vo, is the speed needed to keep the payload in orbit
around the Earth. The remaining terms are mainly dependent on the trajectory of choice
to reach this particular orbit. For a circular orbit,

vo =

√
G ·Me

(Re + h)
, (2.2)

where G is the gravitational constant, Me is the mass and Re is the radius of the Earth,
and h is the orbit altitude. Equation (2.2) indicates that vo for a satellite in a LEO at
200km altitude is approximately 7.8km/s. The additional ∆v terms are ∆vd due to air
drag, ∆vg needed to climb against Earth's gravitational potential, ∆vc in losses when
e�ecting a desired trajectory, and ∆vatm for lower engine performance during the ascent
in the atmosphere. These losses sum up to an additional 1.5− 2km/s, despite the direct
∆v boost caused by the Earth rotation vrot = 463m/s at the equator [5]. All told, a
∆vleo of 9.5 - 10 km/s is required to reach LEO for a ground launched LV.
Calculating the ∆v generated by a LV's propulsion system requires a time history of

its instantaneous thrust (|F |) and mass (m):

∆v =
ˆ
|F |
m
dt, (2.3)

where the integral is carried out over the duration of the maneuver in question. This can
be evaluated out for a speci�c rocket design to yield the ideal rocket equation

∆v = Isp · g · ln
(
mi

mf

)
. (2.4)

The speci�c impulse Isp is an intrinsic property of the fuel and g = 9.81m/s2 is the
acceleration due to gravity. Clearly, the ∆v of the LV depends strongly on the rocket's
mass ratio between the initial take-o� massmi including the mass of the fuel and the �nal
mass mf after burnout consisting of only the payload and structural mass. Multistage
rockets are evaluated by summing the ∆v's of each burn calculated independently.
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2.1.2 Guidance

Active control is necessary to guide a payload along a trajectory to reach LEO. There
is no ballistic path to LEO (�what goes up must come down�), so the LV has to perform
an orbital insertion maneuver at some point. Even if the rocket system piggybacks o�
of larger scale carrier, the delivery method is often incapable of varying initial launch
elevation and position, leaving it to the LV to correct for and �y the proper trajectory
[6].
To guide the LV along the speci�ed trajectory, a controller must determine the position

and attitude of the rocket to subsequently counteract any deviation from the preset �ight
path. Ideally, the full six degree-of-freedom (6DOF) position would be known, identifying
both its location and orientation in space. Typically the controller employs an inertial
measurement unit (IMU) augmented with additional sensors to generate an accurate
estimate of the 6DOF state of the LV from inertial rate measurements and external
observations.
From the state estimate, corrections need to be applied to maintain a desired �ight

pro�le. Given that most of the �ight occurs in extremely thin atmosphere, aerodynamic
surfaces such as �ns would be useless for the LV's attitude control. Therefore, more
sophisticated systems as a gimbaled nozzle for thrust vectoring need to be considered.
This work addresses the guidance subsystem requirement of a minirocket launch vehi-

cle.

2.2 Requirements for Minirocketry

A rocket experiences a drag force

Fd =
1
2
ρCdv

2A, (2.5)

where ρ is the density of the surrounding air, Cd is the drag coe�cient, v is the velocity
of the rocket relative to the air, and A is the rocket's cross sectional area. This results
in a penalty

∆vd =
ˆ
Fd

m
dt, (2.6)

that scales up with decreasing length.
With this increased ∆v requirement, the rocket equation (2.4) indicates that the struc-

tural mass of a small scale LV must be kept as low as possible. Miniaturization of elec-
tronics and advancements in structural materials have enabled the miniaturization of
satellite payloads and associated LV, and the primary design consideration for such a
system is keeping a low mass.
The goal of course is to be able to launch a 10 gram satellite into orbit from the

surface of the Earth. However, due to the low overall mass of the mini-rocket, the payload
delivery system can itself piggyback on other vehicles to reduce the ∆v requirement. The
minirocket can be used for orbital trajectory insertion, with a large scale rocket or an
ultra high altitude balloon (UHAB) carrying the rocket system to the upper atmosphere.
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The concept of launching rockets from a balloon is not a new idea and has been
performed extensively during the 1950s by J.A. Van Allen for upper atmospheric research
[7]. Deployment of a 690kg payload to a peak altitude of 49.4km by a UHAB has been
demonstrated [8]. Similarly, conventional rocket LVs often have spare payload capacity
which can be used to deliver much smaller systems [9].
There are a number of energy advantages for air-based launches:

� Starting powered �ight at 50km altitude or above 98.5% of the atmosphere, the LV
experiences less than 3% of the drag force compared to a ground launched vehicle,
tremendously decreasing ∆vd [6]. Therefore, increased drag due to decreased length
(Eq. 2.6) is a minor concern.

� ∆vg and ∆vc are also lowered since the LV has to �ght Earth's gravity and follow
a given trajectory for a shorter amount of time. Additionally, the LV doesn't need
to compensate for wind gusts, a concern at lower altitudes.

� The engine operates at peak performance when exhausting into near vacuum, di-
rectly increasing thrust F due to an increased ratio between combustion chamber
and ambient pressures [10].

To keep costs, complexity and structural mass at a minimum, a solid propellant seems
to be favorable for a small-scale LV. The need for pipes, valves, tanks, and insulation
in liquid propellant engines would contribute to a high overall structural mass. The
main disadvantages of solid-fuel propellant are the lower speci�c impulse Isp and the lack
of active throttling, though the latter can be overcome by intelligent propellant grain
design, allowing speci�c thrust-time characteristics (which is outside the scope of this
thesis).

2.3 Model Rocketry

2.3.1 Basic Principle

Model rockets are small scale rockets and are generally built out of paper, plastic, wood
and other light weight material. Single-use, o�-the-shelf engines are used to launch the
rocket to altitudes usually around 100−500m. The �ight can be divided in the following
phases:

1. Ignition: The motor is ignited by an electrical match.

2. Thrusting Phase: The burning propellant is delivering full thrust, accelerating the
rocket to maximal velocity.

3. Coasting Phase: After the engine burnout, the rocket coasts for several seconds
while decelerating till it reaches peak altitude.

4. Recovery System Deployment: At the apogee, the recovery system is deployed by
an ejection charge.
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5. Descent: The rocket slowly descends to the ground by hanging on the recovery
system, e.g. a parachute.

To meet these tasks, model rocket engines are subject to a speci�c design which will be
explained in the following subsection.

2.3.2 Engines

Disposable black powder model rocket engines from EstesTM were used in this report.
The engine essentially consists of a cardboard casing, a clay nozzle and propellant (Fig.
2.1a). The propellant can be divided into three fractions: �rst, the black powder, provid-
ing thrust for lifto� and acceleration; second, a slowly burning delay component allowing
the rocket to decelerate during the coasting phase; third, an explosive ejection charge for
the deployment of the recovery system (Fig. 2.1b).

Figure 2.1: a) Longitudinal section of an Estes model rocket engine. b) Burning phases:
I. thrusting for lifto� and acceleration, II. smoking delay charge for tracking
and decelerating the rocket, III. ejection charge for the deployment of the
recovery system. (Estes-Cox Corp., from http://www.estesrockets.com)

Depending on the size and the mass of the rocket, desired velocity and peak altitude or
on the experiment in general, di�erent engines can be selected. The model rocket motors
mainly di�er in the delivered total impulse and the duration of the delay charge. Figure
2.2 shows a characteristic thrust curve for an EstesTME9 engine with a total impulse of
28.5Ns and a peak-thrust in the very beginning for the lifto� of the rocket. The peak
results from the spherical core-burning in the beginning with a maximal reaction surface,
followed by the end-burning with constant burning surface and hence steady thrust. Each
model rocket engine type has a letter-number-number code: the letter indicates the total
impulse in Newton-seconds delivered by the engine (Total impulse doubles with every
subsequent letter, so a �D� engine produces twice the power of a �C� engine), the �rst
number shows the average thrust in Newtons and the second number the duration of the
delay charge in seconds.
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Figure 2.2: Thrust curve of a EstesTME9 model rocket engine.

2.4 Inertial Sensors

Microelectromechanical systems (MEMS) are miniaturized, micro scale devices, often
integrating sensors, actuators and electronics on one chip. Nowadays, MEMS are a
very versatile group of devices and standard components in medical, automotive and
home electronics due to low-cost batch fabrication. The main application of MEMS are
inertial sensors. Inertial sensors are divided into accelerometers and gyroscopes, whereas
the former measure linear acceleration and the latter measure angular velocity about one
or several axes [11].

2.4.1 Micromachined Accelerometers

There have been several di�erent types of micromachined accelerometers reported in
literature and available commercially, but the vast majority use a suspended proof mass
as mechanical sensing system (Fig. 2.3). The proof mass is attached to a reference frame
and will be de�ected by any inertial force due to acceleration and its moment of inertia.
The displacement of the proof mass is measured either by capacitive, piezoresistive,
piezoelectric or tunneling current to determine the magnitude of the acceleration.

2.4.2 Micromachined Gyroscopes

Any moving mass in a rotating reference frame is subject to the Coriolis force Fc, which
is given by the mass m of the moving object and the cross product of the angular velocity
Ω of the rotation and the radial velocity v of the object by:

Fc = 2mΩ× v (2.7)

Most MEMS gyroscopes rely on actively driven, oscillating structures to measure an-
gular rate. In the presence of rotation and therefore due to the Coriolis force, the oscillat-
ing proof mass couples energy from the primary, excited vibration mode in a secondary
mode, perpendicular to the former. The measured amplitude of this secondary oscillation
is proportional to the angular velocity Ω. A schematic model is shown in Fig. 2.4a: the
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Figure 2.3: SEM micrograph of a MEMS dual-axis accelerometer: a proof mass (a) is
suspended by springs (c) and thereby able to move in both in-plane directions.
Comb capacitors (b) measure the displacement of the proof mass due to in-
plane accelerations. (Picture: Analog Devices, Inc.)

suspended proof mass is excited to oscillate along the x-axis with a given amplitude and
frequency. Rotation about the out-of-plane z-axis induces a secondary oscillation along
the y-axis which can be measured with the same techniques as above-mentioned.

Figure 2.4: a) Schematic model of an angular rate MEMS gyro. b) Surface-
micromachined gyroscope. (After: [11].)

2.5 Coordinate System Transformation

A LV's attitude information is essential in order to transform vector measurements, e.g.
accelerations, from the reference frame of the rocket into the observer's inertial earth
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frame coordinate system. By fusing data from a three-axis accelerometer and a three-axis
gyroscope, the full 6DOF state estimate can be resolved. An objects attitude is de�ned
by the transformation between the body-�xed reference frame to the inertial frame. This
transformation can be described using di�erent coordinate parametrizations. The most
common ones are Euler angles and quaternions.

2.5.1 Euler Angles

Leonhard Euler stated that any orientation of an object in 3-dimensional space can be
described by a maximum of three subsequent rotations, de�ned by the Euler angles Ψ, Θ
and Φ (yaw, pitch and roll), which is equivalent with saying that the rotational matrix
Mrot can be decomposed into a product of three independent rotations:

Mrot =

 1 0 0
0 cosΦ sinΦ
0 −sinΦ cosΦ


 cosΘ 0 −sinΘ

0 1 0
sinΘ 0 cosΘ


 cosΨ sinΨ 0
−sinΨ cosΨ 0

0 0 1



=

 cosΘcosΨ cosΘsinΨ −sinΘ
sinΦsinΘcosΨ− cosΦsinΨ sinΦsinΘsinΨ + cosΦcosΨ sinΦcosΘ
cosΦsinΘcosΨ + sinΦsinΨ cosΦsinΘsinΨ− sinΦcosΨ cosΦcosΘ


(2.8)

For real-world applications, Euler angles are unfavorable since for some rotations the
angles become unde�ned, often referred as the �gimbal lock� problem [13]. To overcome
this problem of singularities and decrease the computational burden due to the numerous
sine and cosine functions, quaternions where used in the following for the rocket's state
estimation.

2.5.2 Quaternions

Quaternions are hypercomplex, 4-dimensional numbers, conceived by Sir William R.
Hamilton in 1843. Quaternions are of big interest and use in both theoretical and ap-
plied mathematics and are often used to describe 3-dimensional rotations in an elegant
manner. Since a detailed quaternion discussion is out of the scope of this report, a brief
introduction into the concept of using quaternions for attitude estimation is described in
the following [13].
Quaternions q are composed of a three-dimensional vector part and a scalar part and

can be expressed as

q = q0 + q = q0 + iq1 + jq2 + kq3 (2.9)

where i, j and k are unit vectors in the hyper-dimensional plane. Like 2-dimensional
complex numbers, quaternions obey similar mathematical rules:

i2 = j2 = k2 = ijk = −1
ij = −ji = k
jk = −kj = i
ki = −ik = j

(2.10)

12



Using quaternions to describe rotations, a quaternion vector can be de�ned which
represents a rotation about a unit vector e =(ex, ey, ez) through an angle θ. This
4-dimensional vector can be written in the following format:

q =


q0
q1
q2
q3

 =


cos (θ/2)
sin (θ/2) ex
sin (θ/2) ey
sin (θ/2) ez

 (2.11)

The rotation of a vector v that corresponds to multiplication by a rotation matrix Mrot

v′ = Mrotv (2.12)

can be accomplished using quaternion algebra as

v′ = q∗vq (2.13)

where q∗ is the complex conjugate of q. If the attitude of the body, here the LV, is
constantly changing, the quaternion rates need to be related to the body angular rates:

d

dt
q = q̇ =

1
2
Qω (2.14)

with the rotation matrix Q

Q =


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

 (2.15)

and the attitude rate vector ω, measured by the IMU gyroscopes in the reference frame.
Expanding equation 2.14 gives:

q̇0
q̇1
q̇2
q̇3

 =
1
2


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0




0
ωx

ωy

ωz

 (2.16)

Integration over time of equation 2.16 and normalizing yields to a new quaternion.
This new quaternion contains the actual attitude information and with equation 2.13, the
reference frame accelerations, measured by the IMU accelerometers, can be transformed
in accelerations in the inertial frame. Double integration of the latter gives the actual
position of the LV.
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3 Materials and Methods

3.1 Rocket

In order to test the guidance hardware designed for small scale LVs, a model rocket based
test system was developed. Miniaturization of this rocket wasn't attempted, as the focus
was on the guidance subsystem comprising sensors and actuators.
O�-the-shelf model rocket components were used for the basic rocket structure, namely

cardboard tubes, polystyrene and balsa wood. The rocket contained a parachute for re-
covery and held disposable o�-the-shelf solid-fuel engines. Depending on the experimental
setup, di�erent engines with characteristic performances could be mounted. The rocket
was designed to carry the sensors and controller in its body, and incorporated actuators
for active control. A camera was also mounted for in-�ight video recording for post-�ight
analysis.
The dimension of the �nal rocket, shown in �gure 3.1, was 1.25m with a diameter of

0.06m and overall mass of 0.57kg.

Figure 3.1: Final rocket: 1) gimbaled nozzle, 2) parachute bay, 3) camera, 4) IMU, motor
and payload section, 5) antenna.

3.2 Sensors

An on-board inertial measurement unit (IMU) was used to measure the body referenced
6DOF inertial rates. As above-mentioned (Sec. 2.4), a MEMS accelerometer measured
3 axis linear motion while MEMS gyros measure the 3 axis angular rates. These sensors
can be integrated to calculate the 6DOF position (Sec. 2.5).
An on-board o�-the-shelf camera (FlyCamOne2 from ACMETM ) enabled visual com-

parison with the measured data and provided additional information on di�erent �ight
phases, e.g. parachute deployment.
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3.3 Controller

The �ight controller for the rocket was a custom designed circuit board for use in small
robotic applications and was developed by Ankur Mehta from the UC Berkeley before-
hand. The Guidance and Inertial Navigation Assistant (GINA) board shown in �gure
3.2a comprises the MEMS inertial sensors, a microcontroller, a 2.4GHz wireless radio,
and headers to a daughter card (Fig. 3.2b) to drive the actuators. We used a MSP430
microprocessor from Texas Instruments, an ADXL345 three-axis digital accelerometer
and an ADXRS612 yaw rate gyro from Analog Devices, an IDG-1004 dual-axis gyro
from InvenSense and an AT86RF231 low power 2.4GHz radio transceiver from ATMEL.
The 2g system is the size of a US quarter at half the mass.

Figure 3.2: a) The 2g GINA controller board incorporates inertial sensing, processing,
communications, and actuation. MEMS accelerometers and gyros, a 2.4 GHz
radio, and a connector to the actuator driver board are visible; the processor
is on the backside of the board. b) The GINA daughter board to drive the
actuators.

Though the microcontroller is capable of implementing control laws itself, for ease of
development the system was set up to use a laptop as a command station. The microcon-
troller polled the sensors and transmitted the data wirelessly to a base station connected
via serial port to the laptop, which processed the data to generate control outputs. The
control signals were sent back over the wireless link to the GINA microcontroller, which
then drove the actuators via the daughter board.
The software running on the base station was written in Python and essentially re-

ceived, processed and logged the �ight data. Since orbital trajectories are more robust
to altitude errors than they are to attitude errors and there's no easy way to throttle
a solid-fuel rocket engine, the focus of the controller was on attitude control. The base
station received acceleration and angular rates from accelerometers and the gyros on the
GINA board and integrated them into a position and attitude estimate. This estimate
was demonstrated to track the actual orientation of the rocket quite closely over several
minutes, and so this state was fed into various feedback loops to control the rocket's roll,
pitch, and yaw over the duration of a �ight. And integrated PID controller tried to keep
the rocket in a given attitude and therefore calculated the control output commands.
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These control signals were relayed to the GINA board to set the motor speeds and servo
positions. For debugging, open-loop experiments or just for safety reasons, the software
allowed manual joystick commands to control the actuators. Additionally, an autocali-
bration routine minimized drift due to temperature dependent o�set errors. A �owchart
of the program is shown in �gure 3.3. The entire source code is attached in appendix B.

Figure 3.3: Flowchart of the base station software.

3.4 Actuators

To control the longitudinal (Fig. 3.4a), or roll axis, the rocket body (1) contained two
concentrically mounted discs (3), driven by two counter-rotating brushless DC motors (2).
Controlled acceleration and deceleration of these discs was used to counteract external
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torques on the rocket's roll axis by compensating angular momentum.
For yaw and pitch control, a gimbaled nozzle was developed to vector the thrust along

both axes (Fig. 3.4b). An inner engine mount tube (4) was gimbaled on a spherical
bearing (7), driven by two high-torque servos (5,6). Controlling the position of the
servos steered the rocket engine to point in any direction within a ±4.5° cone. Since
thrust plume and ejection charge are expelled in opposite directions of the engine, the
system had to be designed in such a way that the engine mount tube was unhindered
on either opening. Due to the gimbaled nozzle architecture, all the accelerating and
decelerating forces where absorbed by the bearing's constraining rings and hence there
was no force acting on the servo motors. A screwable aluminum engine retainer facilitated
exchanging the disposable rocket engines (Fig. 3.5).
For the recovery system deployment, the rocket needed to be separable to open the

parachute bay. Since the servo motors were located in the rocket's tail and the controller
in its nose cone, we had to develop robust but low friction contacts to assure both
parachute ejection and servo function. The solution was copper foil contacts (Fig. 3.6)
at the tubes joint for unhindered separation. An ejection ba�e, consisting of two plywood
boards with misaligned drill-holes absorbed hot sparks from the ejection charge to protect
the parachute.

Figure 3.4: Control principles: a) spinning discs for roll, b) gimbaled nozzle for pitch and
yaw.
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Figure 3.5: Partially manufactured gimbaled nozzle: inner engine mount tube with spher-
ical bearing and engine retainer.

Figure 3.6: Copper foil contacts at the inside of the lower tube and at the outside of the
upper tube (not shown) allowed unhindered separation. The ejection ba�e
at the end of the parachute bay protected the parachute from hot sparks.
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4 Experimental Technique

4.1 Sensor Calibration

To get real mechanical quantities out of the IMU sensor readings, both the accelerometers
and the gyros had to be calibrated. More precisely, one had to �nd the o�set d and scaling
factors c to convert the sensor output xsens in a meaningful physical value xreal for all
6DOF, represented by

xreal = cxsens + d (4.1)

4.1.1 Accelerometer

As a reference for the accelerometer calibration, we used the Earth gravitational acceler-
ation, which is de�ned as 1g or 9.81ms−2. Arbitrarily rotating the IMU while recording
the accelerometer output asens = (asens

x , asens
y , asens

z ) led to a raw dataset visualized in
�gure 4.1 by an o�-centered ellipsoid, caused by the di�erent accelerometer readings
along the three spatial axes.

Figure 4.1: Visualization of accelerometer raw data by arbitrary rotations.

Metaphorically speaking, the real acceleration areal = (areal
x , areal

y , areal
z ) could be ob-

tained by transforming the ellipsoid in a sphere with a radius of 1g. We know that

|areal| =
√

(cxasens
x + dx)2 +

(
cyasens

y + dy

)2
+ (czasens

z + dz)2 = 1g (4.2)
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and hence for the whole dataset with m measurements
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Numerical approximation of equation 4.3 in MATLAB returned the scaling factors cacc

and o�sets dacc for the accelerometers.

4.1.2 Gyroscope

For the gyroscope calibration, the IMU was put on a turn table with known angular
rate. The device was spun in several di�erent orientations at altered but known angular
velocities ωreal. Similar to equation 4.2, we knew
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and for all measurements m at di�erent angular velocities ωreal
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Again, numerical approximation of equation 4.5 in MATLAB returned the scaling
factors cgyr and o�sets dgyr for the gyroscopes.

4.2 Uncontrolled Flight

The body-referenced angular rates measured by the IMU can be integrated into a full
earth-referenced 6DOF state estimate (Subsection 2.5). Using those measurements, the
position of a sample uncontrolled rocket �ight can be calculated and compared with
theoretical predictions. The predictions account for aerodynamic drag and gravity and
are based on thrust-time data sheets from the National Association of Rocketry NAR
for o�-the-shelf model rocket engines [12] given the dimensions of the rocket and its time
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dependent mass. For the latter, we assumed the expelled mass to be proportional to the
thrust.

Figure 4.2: Uncontrolled rocket at take-o�.

4.3 Open-Loop Control

The goal of open-loop controlled experiments was to directly in�uence the rocket's atti-
tude. Knowing the e�ect of the actuators on the attitude was critical to �nally program
a closed-loop feedback controller.

4.3.1 Ground-based Experiments

Due to safety reasons and better data validation, extensive ground-based experiments
regarding the rocket actuation were performed before the actual controlled launch.
To test the roll actuation, the rocket was suspended on a thread, allowing free rotation

along the longitudinal axis. The e�ect of accelerating and decelerating the spinning discs
of the roll actuator (Fig. 3.4a) could be estimated by measuring the angular velocity of
the rocket.
For pitch and yaw, the rocket was pinned at its center of gravity and was able to rotate

along one of the axes (Fig. 4.3) . By vectoring the thrust by an angle ε, the e�ect of
gimbaling the nozzle on the pitch and yaw rates could be measured. Since the rocket
is rotation-symmetric, this experiment was performed just along one axis. Additionally,
theoretical predictions based on thrusting angle ε, the rocket's moment of inertia and
the engines thrust characteristics were compared with the measured results. For these
experiments we chose EstesTMC6-0 and D12-0 engines. The zero indicates that these
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engines are booster engines with no ejection charge which could have caused damage to
the rocket and no parachute deployment was necessary.

Figure 4.3: To measure the e�ect of vectoring the trust by an angle ε, the rocket was
pinned at its center of gravity allowing free rotation along one axis.

4.3.2 In-�ight Experiments

After extensive ground-based testing, in-�ight open-loop experiments have been per-
formed.
By controlled acceleration and deceleration of the roll actuator motors during the

ascent, we measured the e�ect on the roll rate. Controlled by manual joystick commands,
we tried to rotate the rocket along it longitudinal axis in both directions.
For the actual open loop controlled �ight with the vectored thrust, the rocket was

programmed to sinusoidally swing the nozzle in the pitch axis back and forth at a 3 Hz
frequency, starting the wiggle when the rocket reached an altitude of 7m. The goal was
to directly control the rocket's pitch and hence its trajectory by gimbaling the nozzle.
For this experiment, the rocket was powered by a EstesTME9-4 engine with a 3s burning
time for additional time for thrust vectoring.

4.4 Closed-Loop Feedback Control

To keep a rocket on a desired trajectory, closed loop feedback control is necessary. Since
the rocket presented in this thesis steers by vectoring its thrust in a particular direction,
holding the roll axis constant is important to prevent a corkscrew like �ight path. De-
pending on the deviation from the initial roll angle at the launch pad, a PID controller
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drives the rotation speed of the two discs, compensating any external torque, e.g. wind
gusts or engine nonuniformities.

4.4.1 Ground-based Experiments

For testing and simulation purposes, the rocket was again suspended by attaching a
thread to its nose cone for unhindered longitudinal rotation, in an analogous manner
as described in subsection 4.3.1. Once the PID gains were manually tuned, two sets
of experiments were conducted: �rst, a fan blowing asymmetrically on the rocket �ns
induced a constant torque; second, a table tennis ball hitting one of the �ns generated a
torque impulse. In both cases, the PID controller tried to hold the rocket in its initial
orientation.

4.4.2 In-�ight Experiments

For the closed-loop feedback controlled �ights, the PID controller was programmed to
maintain the rocket's initial orientation. For this purpose, we chose the same PID gains
validated during the ground-based experiments (Subsection 4.4.1). A less sophisticated
P controller for pitch and yaw tried to keep the rocket in an upright position by gimbaling
the nozzle.
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5 Results and Discussion

5.1 Sensor Calibration

Correct sensor calibration and subsequent coordinate system transformation was vali-
dated by manually moving and rotating the IMU and track its position and orientation.
A 3D plot of a such a motion captured trajectory can be seen in �gure 5.1, representing
bsac or Berkeley Sensor & Actuator Center. The letters were written in the air by hand
with the IMU while tracking its position. Obviously, the trajectory of interest would be
the �ight path of the rocket during a launch.

Figure 5.1: Spatial representation of the position over time tracking of the IMU, demon-
strated by manually writing bsac in the air.

For debugging and veri�cation of the correct attitude interpretation, the Python code
(Section 3.3) was extended by an OpenGL graphical output, representing a digital 3D
model of the small scale rocket. Any change in orientation of the rocket was simultane-
ously displayed by the digital model on the screen (Fig. 5.2).
One of the major problems for state estimation with an IMU is drift, since the outputs

of these sensors su�er from additive Gaussian noise as well as zero bias drift. The additive
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Figure 5.2: Real-time attitude estimation represented by a digital 3D model.

noise often integrates out, but the random o�set in the rates integrates over time into
nontrivial errors. Determining attitude from angular rates requires one integration, and
so diverges from true rather slowly; position however is the double integral of acceleration
and can accumulate errors rather quickly. To compensate for these errors, additional
sensors like GPS, magnetic �eld or optical sensors would be necessary. Though, on the
time scale of our model rocket �ights (duration ≈10s, depending on the engine), drift
was a minor issue.

5.2 Uncontrolled Flight

A typical measured pro�le of an uncontrolled �ight can be seen in �gure 5.3 (here with an
EstesTME9-4 engine). The blue dots indicate the inertial acceleration of the rocket, com-
bining all accelerometer and gyroscope readings. The green and the red line represent the
rocket's velocity and altitude respectively, obtained by integration and double-integration
of the acceleration. The theoretical predictions are plotted as dashed lines in black.
Looking at the acceleration, we can clearly see the characteristic thrust-time behavior

of the engine (�g. 2.2), with a initial peak thrust due to the engines core burning
for the lift-o� boost, a subsequent steady burning followed by the engines burnout and
deceleration of the rocket during the coasting phase. Predicted and measured data match
perfectly until the engine's burnout. A signi�cant shorter burning time of the engine than
predicted by the NAR (due to manufacturing tolerances) led therefore to the deviations
in velocity and altitude after this event. In this particular �ight, wireless connection to
the base station was lost around T+2.5s and again shortly before reaching the apogee
for a short period of time due to unknown reason, but occurred during a few launches.
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Figure 5.3: Measured versus predicted �ight pro�le. Integration of the inertial accelera-
tion (blue) led to velocity (green) and altitude (red). Theoretical predictions
are in black.

Tracking the rocket with the antenna decreased the chance of losing data packets.
The on-board camera provided interesting additional data on attitude but also helped

to assign data features to certain events of a �ight. As mentioned above, model rocket
engines di�er in performance, hence it was helpful to distinguish the exact time of an
event like the burn-out time or parachute deployment (Fig. 5.4).

Figure 5.4: Still pictures of a rocket launch: a) thrusting phase, b) coasting at apogee,
c) parachute deployment.
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5.3 Open-Loop Control

5.3.1 Ground-based Experiments

As expected, acceleration of the roll actuator's discs induced torque on the rocket's
longitudinal axis, hence we were able to spin the rocket in both directions. The major
drawback of this system is its tendency for saturation: once the motors are running at
full speed, no more torque can be generated by the actuator.
To verify the e�ect on pitch and yaw rates, the gimbaled nozzle was commanded to vec-

tor the engine to maximal de�ection at ε = 4.5◦. During peak thrust of an EstesTMC6-
0 we measured an angular acceleration of approximately 6rad/s2, which matched well
with the expected behavior, as seen in �gure 5.5a. In Fig. 5.5b, the thrust vector ε
was switched from one endpoint of +4.5◦ to the opposite endpoint at −4.5◦ at the time
indicated by the vertical dotted line. After about a 0.2s delay from the servo response
time, the nozzle vectored its thrust in the opposite direction, decelerating the pitching
of the rocket, causing it to stop and reverse its rotation.

Figure 5.5: Angular acceleration depending on the thrusting vector ε.

5.3.2 In-�ight Experiments

A rocket was �own with the roll commands driven with joystick control. The resulting
roll angle is shown in �gure 5.6. The rocket's roll rate is clearly in�uenced by the
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(unfortunately unrecorded) disc acceleration and deceleration: without any actuation, a
steady, mainly velocity dependent curve would be observed; the highly irregular peaks
indicate external control. The initial smooth roll of the rocket upon lift-o� is due to
induced torque either by the engine or aerodynamics. One big advantage of this system
is its independency of thrust, being still capable to control during the coasting phase.

Figure 5.6: Roll angle during �ight: the highly irregular peaks indicate external control.

In a subsequent �ight, the thrust was vectored as abovementioned. Around T+1s, when
the controller's state estimate indicated a 7m altitude, the nozzle started its sinusoidal
movement which led to the same wave like pitch movement, revealed by its angular
velocity (Fig. 5.7b). As seen before, the rocket's response was time shifted by around
0.2s due to the servo's response time. The initial pitching of the rocket is visible on
all previous launches, and occurs due to unstable low-velocity behavior. As the relative
speed of the rocket increases, the �ns add stability and the swinging disappears. An
evidently wavelike trajectory can be observed in the rocket's smoke trail (Fig. 5.7a),
visually supporting the measured data.

5.4 Closed-Loop Feedback Control

5.4.1 Ground-based Experiments

Analogous to the open-loop case, the roll actuator tends to saturate, hence the actuator
can only compensate for a certain amount of angular momentum, limited by the motor
speed and the combined moment of inertia of the rotor and disc. The discs act just
as a reservoir for angular momentum but are not capable to get rid of it. Knowing
expected torques on the rocket body, appropriate disc and motor selection can help to
overcome this problem, but might also increase the overall mass. Therefore, application
of a constant torque will �nally end in rotation, but it can be delayed by a signi�cant
amount of time as shown in �gure 5.8 compared to the uncontrolled case.
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Figure 5.7: a) The sinusoidal smoke trail is generated by thrust vectoring, b) Measured
angular velocity demonstrates the rocket's response to pitch control. The
oscillation immediately after the take-o� is due to unstable �ight at low ve-
locities.

Figure 5.8: E�ect of spinning discs on constant torque: In the uncontrolled case (blue
line), the rocket started to roll immediately, whereas in the controlled event
(green line) the PID controller kept the rocket in position for a signi�cant
amount of time, but �nally ended in rotation.
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In the case of an abrupt event like the table tennis ball hitting a �n (simulating a short
duration gust or the like) the system reacts fast to stop the rotation. In the uncontrolled
case (Fig. 5.9a), the rocket keeps turning steadily after the impact, slightly decelerated
by the air resistance of the �ns. By contrast, in the PID controlled scenario, the rotation
stops suddenly and the roll controller drives the rocket back towards its initial position,
as seen in �gure 5.9b.

Figure 5.9: Impulse response of spinning discs: a) uncontrolled and b) PID controlled
case.

5.4.2 In-�ight Experiments

Initial experiments on PID controlled test �ights have been performed, and some stabi-
lizing e�ects were observable visually during the ascent, both by eye and by the on-board
camera, but no evident features could be extracted out of the data. More robust exper-
imental conditions will be devised to evaluate the controlled rocket behavior. In fact,
for all of these experiments, widely varying launch conditions (e.g. wind, engine perfor-
mance, and body condition) makes detailed analysis di�cult.
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Conclusion

In this thesis, an extremely low cost, o� the shelf rocket system was demonstrated with
the capability for attitude controlled �ight. The very small 2g GINA controller was
accurately able to estimate a portion of the state required for trajectory control and
command actuators to control that state. Due to the short time of �ight, sensor drift
was negligible. For longer �ight periods, unavoidable in the case of orbital launches,
additional sensors would be necessary to compensate for these errors. Though beyond the
scope of this thesis, sensors which directly measure position and attitude can be �ltered
together with the measured rates to generate a more accurate state estimate. Typically,
magnetometers, GPS, and cameras complement inertial sensors for localization of robotic
systems [14], [15]. In the case of minirockets, however, weight is at a premium, and so
a minimum of additional sensors are desired. A camera looking at de�ned features such
as the curvature of the earth or celestial bodies can resolve a full 6DOF state estimate,
so it may be a good addition to the sensor suite.
On the hardware side, a more sophisticated system design with advanced materials

like carbon �bers or similar should be used to decrease the structural mass. Once the
rocket is capable of full attitude control, interesting experiments without stabilizing �ns
could be addressed, while decreasing aerodynamic in�uences. Obviously, since not the
goal of this thesis, the reached velocities and altitudes are far from being su�cient for
getting into LEO. Therefore and because attitude control alone is insu�cient for orbital
insertion, superior, thrust controlled engines need to be developed.
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Appendix

A: Altitude Prediction

The numerical altitude predictions account for aerodynamic drag and gravity and are
based on thrust-time data sheets from the National Association of Rocketry NAR for
o�-the-shelf model rocket engines [12] given the dimensions of the rocket and its time
dependent mass. For the latter, we assumed the expelled mass to be proportional to the
thrust. In the one dimensional case, the time dependent acceleration a(t) acting on the
rocket can be written as

a(t) =
T (t)−m(t) · g − 1

2CdρAv(t)2

m(t)

where T (t) is the time dependent thrust, m(t) the time dependent mass, g the gravita-
tional acceleration, Cd the drag coe�cient, ρ the air density, A the exposed surface area
and v(t) the time dependent velocity.

B: Python Source Code

'''
AuTalk 1.0
----------
Based on MoteWin_Talk0.8 and AuTalk0.4.
'''

import serial
import numpy
import sys
import time
import math
import pythoncom, pyHook
import pygame
from pygame import locals
from quaternion import eul2quat, quatinv, quatrotate, quatnorm, quatnormalize, quat_v_rotate_test
from math import sin, cos, tan, pi
from numpy import array, dot, transpose, identity

def bin(x): # converts decimal to 16 bit binary sting
return ''.join(x & (1 << i) and '1' or '0' for i in
range(15,-1,-1))

def motespeak(LEDg, LEDo, mot1, mot0, srv1, srv2, srv3): # generates serial output string

# check imputs and correct input if necassary
if LEDg <= 0:

LEDg = 0
else:

LEDg = 1

if LEDo <= 0:
LEDo = 0

else:
LEDo = 1
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if mot1 <= 0:
mot1 = 0

if mot1 >= 800:
mot1 = 800

if mot0 <= 0:
mot0 = 0

if mot0 >= 800:
mot0 = 800

if srv1 <= -1000:
srv1 = -1000

if srv1 >= 1000:
srv1 = 1000

if srv2 <= -1000:
srv2 = -1000

if srv2 >= 1000:
srv2 = 1000

if srv3 <= -1000:
srv3 = -1000

if srv3 >= 1000:
srv3 = 1000

# set LED status
LEDg = LEDg
LEDo = LEDo

# mot 1
mot1 = mot1
mot1_b = bin(mot1)
mot1_bh = mot1_b[:8]
mot1_dh = int(mot1_bh, 2)
mot1_bl = mot1_b[8:]
mot1_dl = int(mot1_bl, 2)

# mot 0
mot0 = mot0
mot0_b = bin(mot0)
mot0_bh = mot0_b[:8]
mot0_dh = int(mot0_bh, 2)
mot0_bl = mot0_b[8:]
mot0_dl = int(mot0_bl, 2)

# servo 1
svr1 = srv1
svr1_b = bin(svr1)
svr1_bh = svr1_b[:8]
svr1_dh = int(svr1_bh, 2)
svr1_bl = svr1_b[8:]
svr1_dl = int(svr1_bl, 2)

# servo 2
svr2 = srv2
svr2_b = bin(svr2)
svr2_bh = svr2_b[:8]
svr2_dh = int(svr2_bh, 2)
svr2_bl = svr2_b[8:]
svr2_dl = int(svr2_bl, 2)

# servo 3
srv3 = srv3
srv3 = (srv3<<4)+((1-LEDg)<<1)+(1-LEDo)
srv3_b = bin(srv3)
srv3_bh = srv3_b[:8]
srv3_dh = int(srv3_bh, 2)
srv3_bl = srv3_b[8:]
srv3_dl = int(srv3_bl, 2)

# calculate checksum
chksum = mot1_dh + mot1_dl + mot0_dh + mot0_dl + svr1_dh + svr1_dl\

+ svr2_dh + svr2_dl + srv3_dh + srv3_dl
chksum_b = bin(~chksum)
chksum_b8 = chksum_b[8:]
chksum_d8 = int(chksum_b8, 2)

# build output string
ser_str = (chr(0x80) + chr(0x80) + chr(0x80) + chr(0x0a) + \

chr(mot1_dl) + chr(mot1_dh) + chr(mot0_dl) + chr(mot0_dh) + chr(svr1_dl)\
+ chr(svr1_dh) + chr(svr2_dl) + chr(svr2_dh) + chr(srv3_dl) + chr(srv3_dh)\
+ chr(chksum_d8) + chr(0xa5))
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return ser_str

#define communication variables
s, n, m, numstar, numstar_intro, num_error,\

drop_pkg, pkg = 0, 0, 0, 0, 0, 0, 0, ''

#define calc variables
XL_x, XL_y, XL_z = 0, 0, 0
GY_x, GY_y, GY_z = 0, 0, 0
Acc_b = array((0,0,0))*1.0
Acc_e = array((0,0,0))*1.0
Vx, Vy, Vz = 0, 0, 0
Sx, Sy, Sz = 0, 0, 0
precalib = 0
gyr_off_x, gyr_off_y, gyr_off_z = 0, 0, 0
w_x, w_y, w_z = 0, 0, 0
temp1, temp2 = 0, 0
count, runs, pkg_trnsm = 0, 0, 0
t2 = 0
t2_cal = 0
AccEcalib = 0

# number of calibration cycles (gyr, AccE)
num_calib = 1000
num_AccEcalib = 1500

# quaternion calc
omega_rot = array(((0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0)))*1.0
quat = array((1,0,0,0))*1.0
quat_dot = array((0,0,0,0))*1.0
euler = array((0,0,0))*1.0
EulM = array(((0,0,0),(0,0,0),(0,0,0)))*1.0

# accelerometer scaling factors
cx, cy, cz = 0.00376798, 0.00372142, 0.00368486

# accelerometer offset factors
dx, dy, dz = 0.03493920, 0.04247200, 0.20666636

# gyro scaling factors
gx, gy, gz = 0.003308, 0.003238, 0.003093

# earth frame Acceleration
Acc_e_x, Acc_e_y, Acc_e_z = 0, 0, 0

# Body frame Angles
AngB_x, AngB_y, AngB_z = 0, 0, 0

# PID Control Parameter Setting
AngB_zPrevE = 0
AngB_zCorrI = 0
AngB_zSet = 0
Kp_z, Ki_z, Kd_z = 3, 0.5, 1
mot_break = 0

# Gimbaled Nozzle
wavecnt_x = 0
wavecnt_y = 0
center_x = -350
center_y = -180
nz_enable = 0
nz_count = 0

# set motor/servo inputs to 0
mot1_in = 0
mot0_in = 0
srv1_in = 0
srv2_in = 0 + center_x
srv3_in = 0 + center_y

# identify joystick
pygame.init()
pygame.joystick.init() # main joystick device system
try:

j = pygame.joystick.Joystick(0) # create a joystick instance
j.init() # init instance
print 'Enabled joystick: ' + j.get_name()

except pygame.error:
print 'no joystick found.'

# set serial COM-Port
ser = serial.Serial(6, baudrate=921600) #sets COM No. and Baudrate
filename = raw_input('Please enter filename: ') + '.txt' #define filename
print "Writing to file: %s" % filename
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file = open(filename, 'a')

# sets file header
rocket = raw_input('Rocket Name: ')
engine = raw_input('Engine: ')
purp = raw_input('Purpose: ')
weight = raw_input('Total Weight: ')
loc = raw_input('Launch Location: ')
wind = raw_input('Wind: ')
from time import strftime
date = strftime("%Y-%m-%d %H:%M:%S")
file.write('Date: ' + date)
file.write('\nRocket Name: ' + rocket)
file.write('\nEngine: ' + engine)
file.write('\nPurpose: ' + purp)
file.write('\nTotal Weight: ' + weight)
file.write('\nLaunch Location: ' + loc)
file.write('\nWind: ' + wind)
file.write('\n######################################################\n\n')
file.write('t[s] \t\t ax [g] \t ay [g] \t az [g] \t Vx [m/s] \t Vy [m/s] \t Vz [m/s] \t Sx [m]\
\t\t Sy [m] \t Sz [m] \t phi [rad] \t theta [rad] \t psi [rad] \t\
xb [g] \t\t yb [g] \t zb [g] \t wx [rad/s] \t wy [rad/s] \t wz [rad/s]\t AngB_x \t AngB_y \t AngB_z \t\
XL_x \t XL_y \t XL_z \t GY_x \t GY_y \t GY_z \t T1 \t T2 \t Count \t\t P_drp \t LQI \t RSSI \t q0 \t\t q1\
\t\t q2 \t\t q3 \t\t Srv0 \t Srv1 \t mot0 \t mot1\n' % vars())

# if motors are running unmeant, stop them before launch. Center Nozzle
mot_stop = 0
while mot_stop < 1000:

srv3_in = 0 + center_y
srv3_in = int(srv3_in)
srv2_in = 0 + center_x
srv2_in = int(srv2_in)
mot1_in = 0
mot1_in = int(mot1_in)
mot0_in = 0
mot0_in = int(mot0_in)

# send inputs to serial output
ser_out = motespeak(1, 0, mot1_in, mot0_in, srv1_in, srv2_in, srv3_in)
ser.write(ser_out)
mot_stop = mot_stop + 1

print "\n***Actuators reset to 0***\n"

# count 3 stars before starting transmission
while numstar_intro < 3:

m = ser.read(1) #read 1st byte
if m == '*':

numstar_intro = numstar_intro + 1
else:

numstar_intro = 0
if numstar_intro == 3:

print '\n***Gyro Calibration Started***'
break

# run infinite and write data into file
while 1:

try:
n = 0
while n<100: # search for 3 stars in a row

s = ser.read(1)
if s == '*':

numstar = numstar + 1
else:

numstar = 0
pkg = pkg + s
n = n + 1
if numstar == 3: # 3 stars => start capture and process data

pkg = pkg[:-3] # cut off the 3 stars
if len(pkg) == 30: #checks if package has the expected size

dat = numpy.fromstring(pkg[2:22], 'int16')
lqi = numpy.fromstring(pkg[25], 'uint8')
rssi = numpy.fromstring(pkg[26], 'uint8')
if rssi < 20: # if rssi signal to weak: drop packet

drop_pkg = drop_pkg + 1
break

else: # calibrate gyro offset
#get data for the calibration
while precalib < num_calib:

gyr_count = 0
calib_time = time.clock() #start timer
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while gyr_count<100: # search for 3 stars in a row
s = ser.read(1)
if s == '*':

numstar = numstar + 1
else:

numstar = 0
pkg = pkg + s
gyr_count = gyr_count + 1
if numstar == 3: # 3 stars => start capture and process data

pkg = pkg[:-3] # cut off the 3 stars
if len(pkg) == 30: #checks if package has the expected size

dat = numpy.fromstring(pkg[2:22], 'int16')
rssi = numpy.fromstring(pkg[26], 'uint8')
if rssi < 20: # if rssi signal to weak: drop packet

drop_pkg = drop_pkg + 1
break

else: #gyro offset calculation
gyr_off_x = gx*dat[5] + gyr_off_x
gyr_off_y = gy*dat[6] + gyr_off_y
gyr_off_z = gz*dat[7] + gyr_off_z
precalib = precalib + 1
if precalib == num_calib - 1:

calib_time = str(calib_time)
print '***Gyro Calibration Done***\n'
print 'Gyro Calibration Duration: ', calib_time[0:5], 'seconds\n'
print '***Acceleration Calibration Starting***'

# if motors are running unmeant, stop them before launch
mot_stop = 0
while mot_stop < 100:

srv3_in = 0 + center_y
srv3_in = int(srv3_in)
srv2_in = 0 + center_x
srv2_in = int(srv2_in)
mot1_in = 0
mot1_in = int(mot1_in)
mot0_in = 0
mot0_in = int(mot0_in)

# send inputs to serial output
ser_out = motespeak(1, 0, mot1_in, mot0_in, srv1_in, srv2_in, srv3_in)
ser.write(ser_out)
mot_stop = mot_stop + 1

else: # if package size != 30, package is discarded
pkg = ''
break

# start earth frame calibration (calculate offset)
while AccEcalib < num_AccEcalib:

AccEcalib_count = 0
calib2_time = time.clock()
while AccEcalib_count<100: # search for 3 stars in a row

s = ser.read(1)
if s == '*':

numstar = numstar + 1
else:

numstar = 0
pkg = pkg + s
AccEcalib_count = AccEcalib_count + 1
if numstar == 3: # 3 stars => start capture and process data

pkg = pkg[:-3] # cut off the 3 stars
if len(pkg) == 30: #checks if package has the expected size

dat = numpy.fromstring(pkg[2:22], 'int16')
rssi = numpy.fromstring(pkg[26], 'uint8')
if rssi < 20: # if rssi signal to weak: drop packet

drop_pkg = drop_pkg + 1
break

else: #Earth frame acceleration offset calculation

#reset time
t_cal = time.clock()

#time step dt
dt_cal = t_cal - t2_cal
t2_cal = t_cal

# calculate angular rate w
GY_x, GY_y, GY_z = dat[5], dat[6], dat[7]
w_x = gx*GY_x - gyr_off_x/precalib
w_y = -(gy*GY_y - gyr_off_y/precalib)
w_z = gz*GY_z - gyr_off_z/precalib
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# calculate body frame angle
AngB_x = AngB_x + w_x*dt_cal
AngB_y = AngB_y + w_y*dt_cal
AngB_z = AngB_z + w_z*dt_cal

# calculate body frame acceleration
#(x and y interchanged due to coordinate system set.)
XL_x, XL_y, XL_z = dat[2], dat[3], dat[4]
Acc_b_x = cy*XL_y + dy
Acc_b_y = cx*XL_x + dx
Acc_b_z = cz*XL_z + dz
Acc_b[0] = Acc_b_x
Acc_b[1] = Acc_b_y
Acc_b[2] = Acc_b_z

#rotate quaternion
q0 = quat[0]
q1 = quat[1]
q2 = quat[2]
q3 = quat[3]
quat_dot[0] = -0.5*(q1*w_x+q2*w_y+q3*w_z)+(1-quatnorm(quat))*q0
quat_dot[1] = 0.5*(q0*w_x+q2*w_z-q3*w_y)+(1-quatnorm(quat))*q1
quat_dot[2] = 0.5*(q0*w_y+q3*w_x-q1*w_z)+(1-quatnorm(quat))*q2
quat_dot[3] = 0.5*(q0*w_z+q1*w_y-q2*w_x)+(1-quatnorm(quat))*q3

#integrate quat_dot
quat = quat + dt_cal*quat_dot
quat = quatnormalize(quat)

#calc euler angles
euler[0] = math.atan2((2*(quat[0]*quat[1]+quat[2]*quat[3])),

(1-2*(quat[1]**2+quat[2]**2)))
euler[1] = math.asin(2*(quat[0]*quat[2]-quat[3]*quat[1]))
euler[2] = math.atan2((2*(quat[0]*quat[3]+quat[1]*quat[2])),

(1-2*(quat[2]**2+quat[3]**2)))
ph = euler[0]
th = euler[1]
psi = euler[2]

#calc earth frame acceleration

EulM = array(((math.cos(th)*math.cos(psi),math.cos(th)*math.sin(psi),-math.sin(th)),\
(math.sin(ph)*math.sin(th)*math.cos(psi)-math.cos(ph)*math.sin(psi),
math.sin(ph)*math.sin(th)*math.sin(psi)+math.cos(ph)*math.cos(psi),
math.sin(ph)*math.cos(th)),\
(math.cos(ph)*math.sin(th)*math.cos(psi)+math.sin(ph)*math.sin(psi),
math.cos(ph)*math.sin(th)*math.sin(psi)-math.sin(ph)*math.cos(psi),
math.cos(ph)*math.cos(th))))

Acc_e = dot(Acc_b,EulM)
Acc_e_x = Acc_e[0] + Acc_e_x
Acc_e_y = Acc_e[1] + Acc_e_y
Acc_e_z = Acc_e[2] + Acc_e_z
AccEcalib = AccEcalib + 1
if AccEcalib == num_AccEcalib - 1:

calib2_time = str(calib2_time - calib_time)
print '***Acceleration Calibration Done***\n'
print 'Acceleration Calibration Duration: ', calib2_time[0:5], 'seconds\n'
print '***Recording Data***\n'
Acc_e_x_off = Acc_e_x/(num_AccEcalib-1)
Acc_e_y_off = Acc_e_y/(num_AccEcalib-1)
Acc_e_z_off = Acc_e_z/(num_AccEcalib-1)
Acc_e_x = 0
Acc_e_y = 0
Acc_e_z = 0
Vx, Vy, Vz = 0, 0, 0
Sx, Sy, Sz = 0, 0, 0
euler = array((0,0,0))*1.0
w_x, w_y, w_z = 0, 0, 0
AngB_zSet = AngB_z

# if motors are running unmeant, stop them before launch
mot_stop = 0
while mot_stop < 100:

srv3_in = 0 + center_y
srv3_in = int(srv3_in)
srv2_in = 0 + center_x
srv2_in = int(srv2_in)
mot1_in = 0
mot1_in = int(mot1_in)
mot0_in = 0
mot0_in = int(mot0_in)
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# send inputs to serial output
ser_out = motespeak(1, 0, mot1_in, mot0_in, srv1_in, srv2_in, srv3_in)
ser.write(ser_out)
mot_stop = mot_stop + 1

else: # if package size != 30, package is discarded
pkg = ''
break

# start calculation for recording data
#reset time
t = time.clock() - calib2_time

#time step dt
dt = t - t2
t2 = t

# temperatures
temp1 = dat[8]
temp2 = dat[9]

#count
count = dat[0]

# calculate angular rate w
GY_x, GY_y, GY_z = dat[5], dat[6], dat[7]
w_x = gx*GY_x - gyr_off_x/precalib
w_y = -(gy*GY_y - gyr_off_y/precalib)
w_z = gz*GY_z - gyr_off_z/precalib

# calculate body frame angle
AngB_x = AngB_x + w_x*dt
AngB_y = AngB_y + w_y*dt
AngB_z = AngB_z + w_z*dt

# calculate body frame acceleration
#(x and y interchanged due to coordinate system set.)
XL_x, XL_y, XL_z = dat[2], dat[3], dat[4]
Acc_b_x = cy*XL_y + dy
Acc_b_y = cx*XL_x + dx
Acc_b_z = cz*XL_z + dz
Acc_b[0] = Acc_b_x
Acc_b[1] = Acc_b_y
Acc_b[2] = Acc_b_z

#rotate quaternion
q0 = quat[0]
q1 = quat[1]
q2 = quat[2]
q3 = quat[3]
quat_dot[0] = -0.5*(q1*w_x+q2*w_y+q3*w_z)+(1-quatnorm(quat))*q0
quat_dot[1] = 0.5*(q0*w_x+q2*w_z-q3*w_y)+(1-quatnorm(quat))*q1
quat_dot[2] = 0.5*(q0*w_y+q3*w_x-q1*w_z)+(1-quatnorm(quat))*q2
quat_dot[3] = 0.5*(q0*w_z+q1*w_y-q2*w_x)+(1-quatnorm(quat))*q3

#integrate quat_dot
quat = quat + dt*quat_dot
quat = quatnormalize(quat)

#calc euler angles
euler[0] = math.atan2((2*(quat[0]*quat[1]+quat[2]*quat[3])),(1-2*(quat[1]**2+quat[2]**2)))
euler[1] = math.asin(2*(quat[0]*quat[2]-quat[3]*quat[1]))
euler[2] = math.atan2((2*(quat[0]*quat[3]+quat[1]*quat[2])),(1-2*(quat[2]**2+quat[3]**2)))
ph = euler[0]
th = euler[1]
psi = euler[2]

#calc earth frame acceleration

EulM = array(((math.cos(th)*math.cos(psi),math.cos(th)*math.sin(psi),-math.sin(th)),\ (math.sin(ph)*math.sin(th)*math.cos(psi)-math.cos(ph)*math.sin(psi),
math.sin(ph)*math.sin(th)*math.sin(psi)+math.cos(ph)*math.cos(psi),math.sin(ph)*math.cos(th)),\ (math.cos(ph)*math.sin(th)*math.cos(psi)+math.sin(ph)*math.sin(psi),
math.cos(ph)*math.sin(th)*math.sin(psi)-math.sin(ph)*math.cos(psi),math.cos(ph)*math.cos(th))))

Acc_e = dot(Acc_b,EulM)
Acc_e_x = Acc_e[0] - Acc_e_x_off
Acc_e_y = Acc_e[1] - Acc_e_y_off
Acc_e_z = Acc_e[2] - Acc_e_z_off

# velocity
Vx = Vx + dt*-Acc_e_x*9.81
Vy = Vy + dt*-Acc_e_y*9.81
Vz = Vz + dt*-Acc_e_z*9.81
Sx = Sx + dt*Vx
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Sy = Sy + dt*Vy
Sz = Sz + dt*Vz

# PID Control
AngB_zErr = AngB_zSet - AngB_z
if AngB_zErr < 0:

AngB_zErr = -AngB_zErr%6.283
AngB_zErr = -AngB_zErr

elif AngB_zErr > 0:
AngB_zErr = AngB_zErr%6.283

AngB_zCorrI = AngB_zCorrI + AngB_zErr*dt
AngB_zCorrD = (AngB_zErr - AngB_zPrevE)/dt
AngB_zOut = Kp_z*AngB_zErr + Ki_z*AngB_zCorrI + Kd_z*AngB_zCorrD

if AngB_zErr < 0:
AngB_zPrevE = -AngB_zErr%6.283
AngB_zPrevE = -AngB_zPrevE

elif AngB_zErr > 0:
AngB_zPrevE = AngB_zErr%6.283

if AngB_zOut < 0:
mot1_in = -AngB_zOut*500
mot1_in = int(mot1_in)
mot0_in = 0

elif AngB_zOut > 0:
mot0_in = AngB_zOut*500
mot0_in = int(mot0_in)
mot1_in = 0

# Auto Gimbaled Nozzle

if Vz > 0.5:
nz_enable = 1

if nz_enable == 1:
nz_count = nz_count + 1

if nz_count > 10:
srv2_in = AngB_y * 900 + center_x
srv2_in = int(srv2_in)
srv3_in = AngB_x * 900 + center_y
srv3_in = int(srv3_in)

'''if nz_count >= 666:
srv2_in = (AngB_y + math.pi/4) * 900 + center_x
srv2_in = int(srv2_in)
srv3_in = (AngB_x + math.pi/4) * 900 + center_y
srv3_in = int(srv3_in)'''

# Nozzle Maxima
if srv2_in < -800:

srv2_in = -800
if srv2_in > -25:

srv2_in = -25
if srv3_in < -450:

srv3_in = -450
if srv3_in > 190:

srv3_in = 190

'''srv2_in = AngB_y * 800
srv2_in = int(srv2_in)
srv3_in = AngB_x * 800
srv3_in = int(srv3_in)'''

#write into file
file.write('%(t)10f \t %(Acc_e_x)10f \t %(Acc_e_y)10f \t %(Acc_e_z)10f\

\t %(Vx)10f \t %(Vy)10f \t %(Vz)10f \t %(Sx)10f \t %(Sy)10f \t %(Sz)10f\
\t %(ph)10f \t %(th)10f \t %(psi)10f \t %(Acc_b_x)10f \t %(Acc_b_y)10f \t %(Acc_b_z)10f \t\
%(w_x)10f \t %(w_y)10f \t %(w_z)10f \t %(AngB_x)10f \t %(AngB_y)10f \t %(AngB_z)10f \t \
%(XL_x)d \t %(XL_y)d \t %(XL_z)d \t %(GY_x)d \t %(GY_y)d\
\t %(GY_z)d \t %(temp1)d \t %(temp2)d \t %(count)d \t %(drop_pkg)d \t %(lqi)d \t %(rssi)d \t\
%(q0)10f \t %(q1)10f \t %(q2)10f \t %(q3)10f \t %(srv2_in)d \t %(srv3_in)d \t %(mot0_in)d\
\t %(mot1_in)d \n' % vars())
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# listen to joystick events
for e in pygame.event.get(): # iterate over event stack

if e.type == pygame.locals.JOYAXISMOTION:
joyLx , joyLy = j.get_axis(0), j.get_axis(1)

if e.type == pygame.locals.JOYAXISMOTION:
joyRx , joyRy = j.get_axis(2), j.get_axis(3)

elif e.type == pygame.locals.JOYBALLMOTION:
break

elif e.type == pygame.locals.JOYHATMOTION:
break

elif e.type == pygame.locals.JOYBUTTONDOWN:
break

elif e.type == pygame.locals.JOYBUTTONUP:
joyLx, joyLy, joyRx, joyRy = 0, 0, 0, 0

# scale joystick events
srv3_in = joyLx*700
srv3_in = int(srv3_in)
srv2_in = joyLy*700
srv2_in = int(srv2_in)
mot1_in = joyRx*1000
mot1_in = int(mot1_in)
mot0_in = -joyRx*1000
mot0_in = int(mot0_in)

print srv2_in,'\t',srv3_in,'\t',mot0_in,'\t',mot1_in

# send inputs to serial output
#mot0_in = 0
#mot1_in = 0
#srv2_in = center_y
ser_out = motespeak(1, 0, mot1_in, mot0_in, srv1_in, srv2_in, srv3_in)
ser.write(ser_out)
#print Sz, mot0_in, mot1_in, AngB_zErr, AngB_zOut

runs = runs + 1
pkg = ''
dat = ''

else: # if package size != 30, package is discarded
pkg = ''
num_error = num_error + 1 # and an Error is counted
break

except: #stops while 1 loop
print '***Transmission Done***\n\n'
print runs, 'Packages Transmitted'
print num_error, 'Errors occured'
print drop_pkg, 'Packages dropped\n'
comments = raw_input('Comments: ')
pkg_trnsm = runs - num_error

# if motors are running unmeant, stop them before launch
mot_stop = 0
while mot_stop < 1000:

srv3_in = 0 + center_y
srv3_in = int(srv3_in)
srv2_in = 0 + center_x
srv2_in = int(srv2_in)
mot1_in = 0
mot1_in = int(mot1_in)
mot0_in = 0
mot0_in = int(mot0_in)

# send inputs to serial output
ser_out = motespeak(1, 0, mot1_in, mot0_in, srv1_in, srv2_in, srv3_in)
ser.write(ser_out)
mot_stop = mot_stop + 1

#write footer
file.write('\nComments: ' + comments)
file.write('\nCalibration Cycles: ' + str(num_calib))
file.write('\nPackages transmitted: ' + str(pkg_trnsm))
file.write('\nErrors occured: ' + str(num_error) + '\n\n')
file.write('Accelerometer Scaling Factors:\ncx, cy, cz: '\

+ str(cx) + '\t' + str(cy) + '\t' + str(cz) + '\n\n')
file.write('Accelerometer Offset Factors:\ndx, dy, dz: '\

+ str(dx) + '\t' + str(dy) + '\t' + str(dz) + '\n\n')
file.write('Gyro Scaling Factors:\ngx, gy, gz: '\

+ str(gx) + '\t' + str(gy) + '\t' + str(gz) + '\n\n')
file.write('Calibration Cycles:\nGyr, AccE: '\

+ str(num_calib) + '\t' + str(num_AccEcalib) + '\n')
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# closes serial port and file, ends program
ser.close()
file.close()
end = raw_input('Press any key to end program')
sys.exit()

quaternion.py
*************

import math
from math import sin, cos, tan, pi
from numpy import array, dot

def quat2dcm(q):
dcm = array(((0,0,0),(0,0,0),(0,0,0))) * 1.0

dcm[0,0] = q[0]**2 + q[1]**2 - q[2]**2 - q[3]**2;
dcm[0,1] = 2.*(q[1]*q[2] + q[0]*q[3]);
dcm[0,2] = 2.*(q[1]*q[3] - q[0]*q[2]);
dcm[1,0] = 2.*(q[1]*q[2] - q[0]*q[3]);
dcm[1,1] = q[0]**2 - q[1]**2 + q[2]**2 - q[3]**2;
dcm[1,2] = 2.*(q[2]*q[3] + q[0]*q[1]);
dcm[2,0] = 2.*(q[1]*q[3] + q[0]*q[2]);
dcm[2,1] = 2.*(q[2]*q[3] - q[0]*q[1]);
dcm[2,2] = q[0]**2 - q[1]**2 - q[2]**2 + q[3]**2;

return dcm

def quatinv(q):
q = -q
q[0] = -q[0]
return q

def eul2quat(ph, th, psi):
cp = cos(ph/2.0); ct = cos(th/2.0); cs = cos(psi/2.0)
sp = sin(ph/2.0); st = sin(th/2.0); ss = sin(psi/2.0)

return array((
cp * ct * cs + sp * st * ss,
sp * ct * cs - cp * st * ss,
cp * st * cs + sp * ct * ss,
cp * ct * ss - sp * st * cs

))

def quatrotate(q, v):
return(dot(quat2dcm(q), v))

def quatnorm(q):
q = math.sqrt(q[0]**2+q[1]**2+q[2]**2+q[3]**2)
return q

def quatnormalize(q):
q = q/quatnorm(q)
return q

def quat_v_rotate_test(q,v):
quat_v_rot = array(((0,0,0),(0,0,0),(0,0,0))) * 1.0

quat_v_rot[0,0] = (1-2*q[2]**2-2*q[3]**2)
quat_v_rot[0,1] = 2*(q[1]*q[2]+q[0]*q[3])
quat_v_rot[0,2] = 2*(q[1]*q[3]-q[0]*q[2])
quat_v_rot[1,0] = 2*(q[1]*q[2]-q[0]*q[3])
quat_v_rot[1,1] = (1-2*q[1]**2-2*q[3]**2)
quat_v_rot[1,2] = 2*(q[2]*q[3]+q[0]*q[1])
quat_v_rot[2,0] = 2*(q[1]*q[3]+q[0]*q[2])
quat_v_rot[2,1] = 2*(q[2]*q[3]-q[0]*q[1])
quat_v_rot[2,2] = (1-2*q[1]**2-2*q[2]**2)

v = dot(quat_v_rot,v)
return v
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