News from the SNI network

 

 

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers. This leads to an improved sample quality and can be applied to other two-dimensional materials. The results were recently published in Physical Review Letters.

Media release

 

 

Perturbation-free studies of single molecules
Researchers of the University of Basel have developed a new method with which individual isolated molecules can be studied precisely – without destroying the molecule or even influencing its quantum state. This highly sensitive technique for probing molecules is widely applicable and paves the way for a range of new applications in the fields of quantum science, spectroscopy and chemistry, as the journal “Science” reports.

Media release

 

Nanocontainers introduced into the nucleus of living cells
An interdisciplinary team from the University of Basel has succeeded in creating a direct path for artificial nanocontainers to enter into the nucleus of living cells. To this end, they produced biocompatible polymer vesicles that can pass through the pores that decorate the membrane of the cell nucleus. In this way, it might be possible to transport drugs directly into the cell’s control center. The researchers have published their latest findings in the Proceedings of the National Academy of Sciences.

Media release

Molecular factories: The combination between nature and chemistry is functional
Researchers at the University of Basel have succeeded in developing molecular factories that mimic nature. To achieve this they loaded artificial organelles inside micrometer-sized natural blisters (vesicles) produced by cells. These molecular factories remain intact even after injection into an animal model and demonstrate no toxicity, as the team report in the scientific journal Advanced Science.

Media release